1. Cho sáu điểm A,B,C,D,E,F. Chứng minh :
a) AB+CD=AD-BC
b) AB-AD=CB-CD
c) AB-CD=AC-BD
d) AB+CD+BC=AE-DE
e) AC+DE-CE -DC+CB=AB
1. Cho sáu điểm A,B,C,D,E,F. Chứng minh :
a) AB+BC+CD+DA=0
b) AB+DC+BD+CA=0
c) CD+BC+AB=AD
d) AB+CD=AD+CB
e) AD+BE+CF=AE+BF+CD=AF+BD+CE
1.Cho 4 điểm A,B,C,D .Tìm các vecto:
a) u = AB+DC+BD+CA
b) v=AB+CD+BC+DA
2. Cho 4 điểm A,B,C,D . Tìm các vecto :
a) u =CA - CD - DB
b) v= AB - DC +BC - AD
1, Cho tam giác ABC vuông tại A, AB=3 và AC=4. Vector CB+vector AB có độ dài là bao nhiêu?
2, Cho 4 điểm A, B, C, D. Gọi I, J lần lượt là trung điểm các đoạn thẳng AB và CD. Tìm đẳng thức liên hệ của vector IJ.
3, Cho 4 điểm A, B, C, D. Tìm đẳng thức lện hệ của vector AB+vector CD.
4, Cho 6 điểm A, B, C, D, E, F. Vector AB+vector CD+vector FA+vector BC+vector EF+vector DE=?
Bài 1: Cho năm điểm bất kì A, B, C, D, E. CMR:
Vecto AB + vecto DE - vecto DB + vecto BC = Vecto AC + BE
Bài 2: Chó sáu điểm bất kì A, B, C, D, E, F. CMR:
a) Vecto AD + vecto BE + vecto CF = Vecto AE + Vecto BF + vecto CD
b) Vecto AB + vecto CD = Vecto AD + vecto CB
c)Vecto AB - vecto CD = Vecto AB - vecto BD
Bài 3: Cho tam giác ABC nội tiếp trong đường tròn (O). Gọi H là trực tâm và I là trung điểm của BC. Vẽ đường kính AK. CMR: Vecto IH + vecto IB + vecto IK + vecto IC = Vecto 0
Bài 4: Cho hình bình hành ABCD với O là tâm. CMR:
a) Vecto CO - vecto OB = Vecto BA
b) Vecto AB - vecto BC = Vecto DB
c) Vecto DA - vecto DB = Vecto OD - vecto OC
d) Vecto DA - vecto DB + vecto DC = Vecto 0
Bài 4: Cho tam giác ABC vuông cân tại A, trọng tâm G. cạnh AB=a. Gọi I là trung điểm BC. Tính độ dài vecto sau:
a) Vecto a= vecto AB + vecto AC
b) Vecto b= vecto AB + vecto AC + vecto AG
c) Vecto c= vecto BA + vecto BC
d) Vecto d= vecto AB - vecto AC + vecto BI
cho 6 điểm A, B , C , D , E , F bất kì trên mặt phẳng
chứng minh a, \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{CB}\)
b , \(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EA}=\overrightarrow{ED}+\overrightarrow{CB}\)
C, \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}=\overrightarrow{ÀF}+\overrightarrow{BD}+\overrightarrow{CE}\)
mn giúp mik với ạ , lần đầu tham gia nhóm
cho 4 điểm A, B, C, D
a) CMR vec tơ AB + vec tơ CD = vec tơ AD + vec tơ BD
b) CM nếu vec tơ AB = vec tơ CD thì vec tơ AC = vec tơ BD
c) Với điều kiện nào thì vec tơ AB + vec tơ AC là đường phân giác trong của góc BAC
1Vẽ tam giác ABC và tam giác định tổng các vectơ sau : vecto AB + vecto CB và vecto AC + vecto BC.
2 Cho hình bình hành ABCD tâm O . Hãy vẽ vectơ AB dưới dạng tổng của hai vectơ mà các đầu mút lấy I trong 5 điểm A , B,C,D,O.
3 Chứng minh rằng vectơ AB = vectơ CD , vectơ AC = vectơ BD với 4 điểm tùy ý ABCD
Cho hình thang vuông có 2 đáy AB = a,CD = 2a,đường cao AD=a . Xác định và tính độ dài của chúng :
\(AB^{\rightarrow}-DC^{\rightarrow}\) ; \(BD^{\rightarrow}-AC^{\rightarrow}\); \(DA^{\rightarrow}+BA^{\rightarrow}-CD^{\rightarrow}\);\(AE^{\rightarrow}-BA^{\rightarrow}\);\(AD^{\rightarrow}-CA^{\rightarrow}\)