Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

AT

Cho 3 số x,y,z>0 thỏa \(x+y+z=3\) tìm min của P\(=xy+yz+zx+\frac{3}{x}+\frac{3}{y}+\frac{3}{z}\)

NL
25 tháng 2 2020 lúc 13:53

\(P=xy+yz+zx+2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(P\ge xy+yz+zx+\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{zx}}+\frac{9}{x+y+z}\)

\(P\ge xy+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xy}}+yz+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{yz}}+zx+\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{zx}}+3\)

\(P\ge3\sqrt[3]{\frac{xy}{xy}}+3\sqrt[3]{\frac{yz}{yz}}+3\sqrt[3]{\frac{zx}{zx}}+3=12\)

\(P_{min}=12\) khi \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
AJ
Xem chi tiết
AT
Xem chi tiết
KR
Xem chi tiết
TF
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
TL
Xem chi tiết
BD
Xem chi tiết
NP
Xem chi tiết