Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NP

Giúp mình câu này với: Cho x,y,z>0 và x+y+z=1. Tìm GTNN(min) của \(P=\frac{9}{1-\left(xy+yz+zx\right)}+\frac{1}{4xyz}\)

AH
17 tháng 1 2017 lúc 13:06

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left [\frac{9}{1-(xy+yz+xz)}+\frac{1}{4xyz}\right]\left [1-(xy+yz+xz)+9xyz\right ]\geq (3+\frac{3}{2})^2=\frac{81}{4}\)

\(\Rightarrow P\geq \frac{81}{4[1-(xy+yz+xz)+9xyz]}\) $(1)$

Áp dụng BĐT Am-Gm: \(xy+yz+xz=(x+y+z)(xy+yz+xz)\geq 9xyz\)

\(\Rightarrow 1-(xy+yz+xz)+9xyz\leq 1\) $(2)$

Từ \((1),(2)\Rightarrow P\geq \frac{81}{4}\)

Vậy \(P_{\min}=\frac{81}{4}\Leftrightarrow (x,y,z)=\left(\frac{1}{3},\frac{1}{3},\frac{1}{3}\right)\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
PN
Xem chi tiết
KR
Xem chi tiết
AT
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
DA
Xem chi tiết
H24
Xem chi tiết