Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

AJ

Cho các số thực x, y, z thỏa mãn \(x^2+y^2+z^2=3\). Chứng minh \(\frac{x}{3-yz}+\frac{y}{3-zx}+\frac{z}{3-xy}\le\frac{3}{2}\)

NL
31 tháng 5 2020 lúc 13:40

Số thực hay số thực dương bạn?

Bình luận (0)
NL
31 tháng 5 2020 lúc 20:45

\(yz\le\frac{1}{2}\left(y^2+z^2\right)=\frac{1}{2}\left(3-x^2\right)\)

\(\Rightarrow3-yz\ge3-\frac{1}{2}\left(3-x^2\right)=\frac{3}{2}+\frac{1}{2}x^2\)

\(\Rightarrow\frac{x}{3-yz}\le\frac{x}{\frac{3}{2}+\frac{1}{2}x^2}=\frac{2x}{x^2+3}\)

Làm tương tự và cộng lại ta có: \(VT\le2\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

Ta sẽ chứng minh: với mọi \(0< x^2< 3\) ta luôn có: \(\frac{x}{x^2+3}\le\frac{x^2+3}{16}\)

Thật vậy, BĐT tương đương:

\(16x\le\left(x^2+3\right)^2\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+9\right)\ge0\) (luôn đúng)

Tương tự: \(\frac{y}{y^2+3}\le\frac{y^2+3}{16}\) ; \(\frac{z}{z^2+3}\le\frac{z^2+3}{16}\)

Cộng vế với vế:

\(VT\le2.\frac{x^2+y^2+z^2+9}{16}=\frac{3}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)

Các câu hỏi tương tự
TF
Xem chi tiết
PN
Xem chi tiết
AT
Xem chi tiết
TL
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
DT
Xem chi tiết
TH
Xem chi tiết
NA
Xem chi tiết