Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài 1: Căn bậc hai

TG

Cho 3 số x,y,z thỏa mãn -1\(\le\)x,y,z\(\le\)3 và x+y+z=1. Chứng minh rằng x2+y2+z2\(\le\)11

HN
7 tháng 5 2017 lúc 18:25

Từ đề bài ta có:

\(\left\{{}\begin{matrix}\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge0\\\left(x-3\right)\left(y-3\right)\left(3-z\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\ge0\\-xyz+3\left(xy+yz+zx\right)-9\left(x+y+z\right)+27\ge0\end{matrix}\right.\)

Lấy trên + dưới ta được

\(4\left(xy+yz+zx\right)-8\left(x+y+z\right)+28\ge0\)

\(\Leftrightarrow4\left(xy+yz+zx\right)+20\ge0\)

\(\Leftrightarrow2\left(x+y+z\right)^2+20\ge2x^2+2y^2+2z^2\)

\(\Leftrightarrow x^2+y^2+z^2\le11\)

Bình luận (0)
LF
7 tháng 5 2017 lúc 18:35

Bài này Karamata là vừa :D

Giả sử \(a\ge b\ge c\)

Khi \(f\left(x\right)=x^2\) là hàm lồi trên \(\left[-1,3\right]\)\((-1,-1,3)\succ(a,b,c)\)

Theo Karamata's inequality ta có:

\(11=\left(-1\right)^2+\left(-1\right)^2+3^2\ge a^2+b^2+c^2\)

Bình luận (0)

Các câu hỏi tương tự
DL
Xem chi tiết
MH
Xem chi tiết
NB
Xem chi tiết
KB
Xem chi tiết
NT
Xem chi tiết
AJ
Xem chi tiết
PA
Xem chi tiết
DT
Xem chi tiết
ND
Xem chi tiết