Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho đường tròn tâm O bán kính R=6cm và điểm A cách O một khoảng 10cm từ A vẽ tiếp tuyến AB ( B là tiếp điểm) và cát tuyến bất kỳ ADC ( C nằm giữa A và D) gọi I là trung điểm của đoạn CD
a) tính độ dài AB, số đo góc OAB
b) chứng minh: bốn điểm A,B,O và I cùng thuộc 1 đường tròn
c) chứng minh: AC.AD=AI^2-IC^2. Từ đó suy ra tính AC.AD không đổi khi C thay đổi trên đường tròn (O)
Cho đường tròn tâm O bán kính R và điểm M ở ngoài đường tròn đó. Qua điểm M kẻ hai tiếp tuyến MA, MB với đường tròn (O). Qua điểm M kẻ cát tuyến MCD với đường tròn (O), tức là đường thẳng đi qua điểm M và cắt đường tròn tại hai điểm là C, D). Gọi I là trung điểm của dây CD, Khi đó MAOIB có là ngũ giác nội tiếp hay không ?
Cho tam giác ABC có 3 góc nhọn , ABC=75 độ , (ab<ac, ac cố định ) nội tiếp đường tròn tâm o . các đường cao AF và CE của tam giác abc cắt nhau tại h ( f thuộc bc , e thuộc ab )
a cm tứ giác BEHF nội tiếp
b kẻ đường kính ak của đường tròn o .chứng minh ; hai tam giác abk và afc đồng dạng
c khi b di chuyển trên cung lớn ac thì điểm H di chuyển trên đường nào
giúp mình câu c ạ !!!
Cho đường tròn (O;R) và một điểm S nằm bên ngoài đường tròn. Kẻ các tiếp tuyến SA,SB của đường tròn (O;R) (với A,B là tiếp điểm). Đường thẳng a đi qua S (không đi qua tâm O) cắt đường tròn(O;R) tại hai điểm M,N (M nằm giữ S và N). a) CM: SO ⊥ AB b) Gọi I là trung điểm của MN và H là giao điểm của SO,AB ;hai đường thẳng OI và AB cắt nahu tại E.CM: OI.OE=R2 (vẽ hộ em hình luôn ạ)
cho tam giác abc có 3 góc nhọn ( AB < AC) nội tiếp đường tròn tâm o. kẻ đường thẳng d là tiếp tuyến tại A của đường tròn tâm o . Gọi d' là đường thẳng đi qua B và song song với d; d' cắt các đường thẳng Ao , AC lần lượt tại E, D. Kẻ À là đường cao của tam giác ABC ( F thuộc BC )
a) Chướng minh rằng tứ giác ABFE nội tiếp
b) chướng minh rằng AB2 = AD * AC
c) Gọi M,N lần lượt là trung diểm của AB, BC . CMR: MN vuông góc với EF
Giúp mình với
Cho đường tròn tâm O, đường kính AB = 2R. Đường trung trực của OA cắt (O) tại C, D và cắt OA tại E. Gọi K thuộc cung BC nhỏ của (O), AK cắt CE tại H.
1. Chứng minh: Tứ giác BEHK nội tiếp.
2. Chứng minh: AC2 = AH. AK và AC = R.
3. Chứng minh: Tâm đường tròn ngoại tiếp tam giác CHK luôn thuộc một đường thẳng cố định khi K di chuyển trên cung BC nhỏ của (O).
Bài 1: Cho (O;R) đường kính AB. Góc I là diểm nằm giữa A và O. Qua I vẽ dây cung CD vuông góc với OA. Dụng các tiếp tuyến tại A và B của đường tròn. Tiếp tuyến tại C cắt tiếp tuyến tại A và B lần lượt ở E và F.
a) Chứng minh 4 điểm A,E,C,O cùng thuộc 1 đường tròn.
b) Tính độ dài CI biết AB =20 cm , AI =4cm
c) Cm góc ÈO=90 độ và AE.BE=R^2
Cho đường tròn (O; R) , dây AB cố định (AB không đi qua O). I là trung điểm của AB. Trên cung lớn AB lấy 1 điểm C. Các đường cao AD, BE cắt nhau tại H và cắt đường tròn tại điểm thứ hai lần lượt ở M và N. Gọi K là trung điểm của CH. Chứng minh:
a) Tứ giác ABDE nội tiếp
b) MN // DE.
c) Đoạn thẳng CK có độ dài không đổi khi C di chuyển trên cung lớn AB.
Cho △ABC nhọn vẽ đường tròn tâm O, đường kính BC cắt AB và AC tại E và D.
a) CM △BEC và △BDC vuông
b) AE.AB=AD.AC
c) Điểm I ∈ BD, K ∈ CE. Sao cho \(\widehat{AIC}=\widehat{AKB}=90^o\). Chứng minh AI=AK