Câu 5 (3,0 điểm). Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Các đường cao
AD, BE, CF của tam giác ABC cắt nhau tại H.
a) Chứng minh các tứ giác AEHF, BFEC nội tiếp đường tròn.
b) Đường thẳng AO cắt đường tròn tâm O tại điểm K khác điểm A. Gọi I là giao điểm của
hai đường thẳng HK và BC. Chứng minh I là trung điểm của đoạn thẳng BC.
c, tinh AH/AD + BH/BE + CH/CF =2
Câu 4(3,0 điểm) Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn tâm O. Các đường cao AD, BE, CF của tam giác ABC cắt nhau tại H. Gọi M là giao điểm của EF và BC. Qua B kẻ đường thẳng song song với AC cắt AM tại P và AD tại Q.
a) Chứng minh tứ giác AEHF nội tiếp.
b) Chứng minh DFC = EFC.
c) Chứng minh BP = BQ.
giúp tôi câu c mọi người ơi
bài 1 cho tam giác ABC nhọn nội tiếp (O,R). hạ các đường cao AH và BK của tam giác. các tia AH và BK lần lượt cắt O tại điểm thứ hai là D và E.
a. chứng minh tứ giác ABHK nội tiếp. tìm tâm của đường tròn đó
b.chứng minh rằng HK song song với DE.
c. cho (O) và dây AB cố định, điểm C di động trên (O) sao cho tam giác ABC nhọn. CMR độ dài bán kính đương tròn ngoại tiếp tam giác CHK không đổi.
Bài 1: Cho tam giác ABC (AB> AC) có ba góc nhọn nội tiếp đường tròn (O). Gọi H là giao điểm của các đường cao AM, BQ, CK a, Chứng minh: Tứ giác MHKB nội tiếp và tử giác BKQC nội tiếp. b, Qua A kẻ tiếp tuyến Ay với đường tròn (O) cắt đường thẳng BC tại F. Chứng minh FA^2 = FB. FC
Cho tam giác ABC có ba góc nhọn, AB < AC nội tiếp đường tròn (O). Gọi điểm I là tâm đường tròn nội tiếp tam giác ABC. Tia AI cắt đoạn BC tại điểm J, cắt đường tròn (O) tại điểm thứ hai M (M khác A)
1) Chứng minh MI2 = MJ. MA
2, Kẻ đường kính MN của đường tròn (O). Đường thẳng AN cắt các tia phân giác trong của góc ABC và góc ACB lần lượt tại các điểm P và Q. Chứng minh N là tung điểm của đoạn thẳng PQ
3, lấy điểm E bất kỳ thuộc cung nhỏ MC của đường tròn (O) (E khác M). Gọi F là điểm đối xứng với điểm I qua điểm E. Gọi R là giao điểm của hai đường thẳng PC và QB. Chứng minh 4 điểm P, Q, R, F cùng thuộc một đường tròn
Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O;R). Gọi H là trực tâm của tam giác ABC. Gọi M là trung điểm của BC
a) Chứng minh AH = 2OM
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O). Gọi H là giao điểm của hai đường cao BE và CF, AD của tam giác ABC ( NAB, MAC )
a) Chứng minh tứ giác BCEF nội tiếp đường tròn và AO vuông góc EF
b) Kẻ đường kính AK của đường tròn (O). Chứng minh AD.AK = AB. AC
c) Đường thẳng EF cắt đường tròn (O) tại N và M ( E nằm giữa F và M ).Chứng minh AN là tiếp tuyến của đường tròn ngoại tiếp tam giác NHD
Cho tam giác nhọn ABC (AB < AC ) nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AD của đường tròn (O). Từ hai điểm B và C kẻ BE ⊥ AD tại E và CF ⊥ AD tại F.
a. Chứng minh rằng tứ giác ABHE nội tiếp.
b. Chứng minh rằng HE / /CD.
c. Gọi I là trung điểm của BC. Chứng minh rằng IE = IF .
cho tam giác ABC nhọn nội tiếp đường tròn(O;R)biết AB<AC ,các đường cao AD,BE,CF cắt nhau tại H.Gọi I là trung điểm BC ,kẻ tiếp tuyến Ax với (O),A là tiếp điểm
!,C/m:tứ giác BEFC,FDIE nội tiếp
2,C/m:OA vuông góc EF
cho tam giác ABC nhọn và AB nhỏ hơn AC nội tiếp đường tron O. I là tâm đường tròn nột tiếp tma giác ABC, ID vuông góc với BC, AD giao (O) tại G. F là điểm chính giữa cung lớn BC, FG giao ID tại H. CM tứ giác IBHC là tứ giác nội tiếp