Em chụp hình bài đó lại nhé!
Em chụp hình bài đó lại nhé!
a) Vẽ một lục giác đều ABCDEG nội tiếp đường tròn bán kính 2cm rồi vé hình 12 cạnh đều AIBJCKDEMGN nội tiếp đường tròn đó. Nêu cách vẽ :
a) Tính độ dài cạnh AI
b) Tính bán kính r của đường tròn nội tiếp hình AIBJCKDEMGN
Hướng dẫn : Áp dụng các công thức ở bài 46
Vẽ đường tròn tâm O bán kính R = 2cm rồi vẽ hình tám cạnh đều nội tiếp đường tròn (O; 2cm). Nêu cách vẽ ?
Vẽ hình vuông ABCD tâm O rồi vẽ tam giác đều có một đỉnh là A và nhận O làm tâm. Nêu cách vẽ ?
a) Vẽ đường tròn tâm O, bán kính 2cm.
b) Vẽ hình vuông nội tiếp đường tròn (O) ở câu a.
c) Tính bán kính r của đường tròn nội tiếp hình vuông ở câu b) rồi vẽ đường tròn (O; r).
Cho đường tròn ( O, R ) và một điểm S ở ngoài đường tròn. Vẽ hai tiếp tuyến SA, SB ( A, B là các tiếp điểm). Vẽ đường thẳng a đi qua S và cắt đường tròn ( O ) tại M và N, với M nằm giữa S và N ( đường thẳng a không đi qua tâm O )
a) Chứng minh : SO vuông góc AB
b) Gọi H là giao điểm SO và AB; gọi I là trung điểm của MN. Hai đường thẳng OI và AB cắt nhau tại E. Chứng minh rằng IHSE là tứ giác nội tiếp đường tròn
Giải giúp mình với! Có hình vẽ nữa nhé các bạn
Vẽ hình lục giác đều, hình vuông, tam giác đều cùng nội tiếp đường tròn (O; R) rồi tính cạnh của các hình đó theo R.
Cho tam giác nhọn nội tiếp đường tròn tâm . Trên cung nhỏ lấy điểm sao cho không là đường kính ( không trùng ). Gọi lần lượt là hình chiếu của điểm trên các đường thẳng . Chứng minh ba điểm thẳng hàng.
Giúp tớ với ạ cần gấp tks ạ !!!!
1) Cho nửa đường tròn đường kính AB,tia tiếp tuyến Ax (cùng phía đtròn). Từ M trên tia Ax kẻ tiếp tuyến MC vs nửa đtròn. AC cắt OM tại B, MB cắt nửa đtròn (O) tại D
A) c/m t/g AMCD và MADE nội tiếp
B) c/m góc ADE = góc ACO
C) Vẽ CH vuông góc AB (h €AB) c/m MB đi qua trung điểm CH
cho tam giác ABC có 3 góc nhọn nội tiếp đtròn tâm O. Vẽ các đường cao BE, CF cắt nhau tại H. Kẻ đường kính BK của (O). chứng minh rằng:
a. BCEF là tứ giác nội tiếp.
b. AHCK là hình bình hành.
c. Đường tròn đường kính AC cắt BE ở M. Đường tròn đường kính AB cắt CF ở N. Chứng minh AM = AN