HD

 

Bài 6. Cho tam giác ABC. Qua A kẻ đường thẳng song song với BC, qua C kẻ đường thẳng song song với AB. Hai đường thẳng cắt nhau tại D.

a. Chứng minh ∆ABC =∆ADC

b. Chứng minh ∆ADB = ∆CBD

c. Gọi O là giao điểm của AC và BD. Chứng minh ∆ABO = ∆COD

Bài 7. Cho góc xAy khác góc bẹt. Gọi AD là tia tia phân giác của góc xAy. Qua D kẻ đường thẳng vuông góc với Ay cắt Ay tại C và cắt Ax tại E. Qua D kẻ đường thẳng vuông góc với Ax cắt Ax tại B và cắt Ay tại H. Chứng minh:

a. ∆ABD = ∆ACD

b. ∆DBE = ∆DCH

c. ∆ABH = ∆ACE

 

NT
13 tháng 5 2023 lúc 21:43

6:

a: Xét ΔABC và ΔCDA có

góc BAC=góc DCA

AC chung

góc BCA=góc DAC

=>ΔABC=ΔCDA

b: Xét ΔADB và ΔCBD có

AD=CB

AB=CD

DB chung

=>ΔADB=ΔCBD

c: Xét tứ giác ABCD có

AB//CD

AD//BC

=>ABCD là hình bình hành

=>O là trung điểm chung của AC và DB

Xét ΔOAB và ΔOCD có

OA=OC

góc AOB=góc COD

OB=OD
=>ΔOAB=ΔOCD

Bình luận (0)

Các câu hỏi tương tự
KN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
TL
Xem chi tiết
HV
Xem chi tiết
HT
Xem chi tiết
DC
Xem chi tiết
LV
Xem chi tiết
NC
Xem chi tiết