DM

Bài 10. Cho tam giác ABC vuông tại A, đường phân giác BE, kẻ EH vuông góc với BC tại H, gọi K là giao điểm của hai đường thẳng BA và HE a) Chứng minh AE = HE, AB = BH b) Chứng minh tam giác BCK là tam giác cân c) Tính độ dài BK, AC biết AB = 6cm, BC = 10cm

NP
8 tháng 3 2022 lúc 19:48

. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Bình luận (0)
NT
8 tháng 3 2022 lúc 19:48

a: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

EB chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔBAE=ΔBHE

Suy ra: BA=BH và EA=EH

b: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

hay ΔBKC cân tại B

c: BK=BC=10cm

=>AC=8cm

Bình luận (0)

Các câu hỏi tương tự
LH
Xem chi tiết
H24
Xem chi tiết
AT
Xem chi tiết
NT
Xem chi tiết
NL
Xem chi tiết
BC
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết