Bài 1: Căn bậc hai

AD

Bài 1. Tính:

a) \(\sqrt{\frac{5+\sqrt{21}}{5-\sqrt{21}}}+\sqrt{\frac{5-\sqrt{21}}{5+\sqrt{21}}}\) b) \(\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{11-6\sqrt{2}}}}\)

c) \(\frac{\left(5\sqrt{3}+\sqrt{50}\right)\left(5-\sqrt{24}\right)}{\sqrt{75}-5\sqrt{2}}\) d) \(\frac{1}{\sqrt{25}+\sqrt{24}}+\frac{1}{\sqrt{24}+\sqrt{23}}+...+\frac{1}{\sqrt{2}+\sqrt{1}}\)

Bài 2. Tìm x

a) \(\sqrt{x-2\sqrt{x-1}}=2\) b) \(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)

giúp tớ với, chiều nay tớ p ik hok rồi, thầy ktra bài tập nx

NL
17 tháng 9 2019 lúc 14:14

Bài 1:

a/ \(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{\left(5-\sqrt{21}\right)\left(5+\sqrt{21}\right)}}\)

\(=\sqrt{\frac{\left(5+\sqrt{21}\right)^2}{4}}+\sqrt{\frac{\left(5-\sqrt{21}\right)^2}{4}}=\frac{5+\sqrt{21}}{2}+\frac{5-\sqrt{21}}{2}\)

\(=\frac{10}{2}=5\)

b/ \(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+\sqrt{\left(3-\sqrt{2}\right)^2}}}\)

\(=\left(2-\sqrt{2}\right)\sqrt{2+4\sqrt{3+\sqrt{2}+3-\sqrt{2}}}\)

\(=\left(2-\sqrt{3}\right)\sqrt{2+4\sqrt{6}}\)

Bạn coi lại đề, tới đây ko rút gọn được nữa nên chắc bạn ghi đề nhầm ở chỗ nào đó

Bình luận (0)
NL
17 tháng 9 2019 lúc 14:20

c/ \(=\frac{5\left(\sqrt{3}+\sqrt{2}\right)\left(5-\sqrt{24}\right)}{5\left(\sqrt{3}-\sqrt{2}\right)}=\frac{\left(\sqrt{3}+\sqrt{2}\right)^2\left(5-\sqrt{24}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\left(5+2\sqrt{6}\right)\left(5-\sqrt{24}\right)=\left(5+\sqrt{24}\right)\left(5-\sqrt{24}\right)=1\)

d/ Nhân cả tử và mẫu của từng phân số với liên hợp của mẫu, mẫu số sẽ thành 1 hết:

\(=\frac{\sqrt{25}-\sqrt{24}}{\left(\sqrt{25}+\sqrt{24}\right)\left(\sqrt{25}-\sqrt{24}\right)}+\frac{\sqrt{24}-\sqrt{23}}{\left(\sqrt{24}+\sqrt{23}\right)\left(\sqrt{24}-\sqrt{23}\right)}+...+\frac{\sqrt{2}-1}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}\)

\(=\sqrt{25}-\sqrt{24}+\sqrt{24}-\sqrt{23}+...+\sqrt{2}-1\)

\(=\sqrt{25}-1=5-1=4\)

Bình luận (0)
NL
17 tháng 9 2019 lúc 14:26

Câu 2:

a/ ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1-2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}-1\right)^2}=2\)

\(\Leftrightarrow\left|\sqrt{x-1}-1\right|=2\)

TH1: \(\sqrt{x-1}-1\ge0\Rightarrow x\ge2\) pt trở thành:

\(\sqrt{x-1}-1=2\Leftrightarrow\sqrt{x-1}=3\)

\(\Rightarrow x-1=9\Rightarrow x=10\) (nhận)

TH2: \(\sqrt{x-1}-1< 0\Rightarrow1\le x< 2\) pt trở thành:

\(1-\sqrt{x-1}=2\Rightarrow\sqrt{x-1}=-1< 0\) (vô nghiệm)

b/

\(\sqrt{x^2-x}+\sqrt{x^2+x-2}=0\)

Do \(\left\{{}\begin{matrix}\sqrt{x^2-x}\ge0\\\sqrt{x^2+x-2}\ge0\end{matrix}\right.\) nên đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\sqrt{x^2-x}=0\\\sqrt{x^2+x-2}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x^2+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow x=1\)

Bình luận (0)

Các câu hỏi tương tự
MH
Xem chi tiết
NL
Xem chi tiết
NH
Xem chi tiết
DA
Xem chi tiết
TH
Xem chi tiết
NL
Xem chi tiết
FG
Xem chi tiết
TT
Xem chi tiết
AP
Xem chi tiết