Bài 1: Căn bậc hai

AP

\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\\ \\ \\ \sqrt{\frac{9}{4}-\sqrt{2}}\\ \\ \\ Sosanh2\sqrt{27}va\sqrt{147}\\ \\ \\ 2\sqrt{15}va\sqrt{59}\\ \\ \\ 2\sqrt{2}-1va2\\ \\ \\ \frac{\sqrt{3}}{2}va1\\ \\ \\ -\frac{\sqrt{10}}{2}va-2\sqrt{5}\\ \\ \\ \sqrt{6}-1va3\\ \\ \\ 2\sqrt{5}-5\sqrt{2}va1\\ \\ \\ \frac{\sqrt{8}}{3}va\frac{3}{4}\\ \\ \\ -2\sqrt{6}va-\sqrt{23}\\ \\ \\ 2\sqrt{6}-2va3\\ \\ \\ \sqrt{111}-7va4\)

Xếp theo thứ tự tăng dần: \(21,2\sqrt{7},15\sqrt{3},-\sqrt{123}\) ; \(28\sqrt{2},\sqrt{14},2\sqrt{147},36\sqrt{4}\)

giảm dần: \(6\sqrt{\frac{1}{4}},4\sqrt{\frac{1}{2}},-\sqrt{132},2\sqrt{3},\sqrt{\frac{15}{5}}\); \(-27,4\sqrt{3},16\sqrt{5},21\sqrt{2}\)

LH
25 tháng 8 2019 lúc 17:03

a,\(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4\left(1+\sqrt{2}\right)\right)\)

=\(\left(5+4\sqrt{2}\right)\left(9-4-4\sqrt{2}\right)\)

=\(\left(5+4\sqrt{2}\right)\left(5-4\sqrt{2}\right)=25-\left(4\sqrt{2}\right)^2\)

=-7

b, \(\sqrt{\frac{9}{4}-\sqrt{2}}=\sqrt{\frac{9-4\sqrt{2}}{4}}=\frac{\sqrt{9-4\sqrt{2}}}{2}=\frac{\sqrt{9-2\sqrt{8}}}{2}=\frac{\sqrt{\left(\sqrt{8}-1\right)^2}}{2}=\frac{\left|\sqrt{8}-1\right|}{2}=\frac{\sqrt{8}-1}{2}\)

Bình luận (0)
NU
26 tháng 8 2019 lúc 10:04

So sánh:

1) \(2\sqrt{27}\)\(\sqrt{147}\)

+ \(2\sqrt{27}\) = \(6\sqrt{3}\)

+ \(\sqrt{147}\) = \(7\sqrt{3}\)

\(6\sqrt{3}\) < \(7\sqrt{3}\)

Vậy: \(2\sqrt{27}\)< \(\sqrt{147}\)

2) \(2\sqrt{15}\)\(\sqrt{59}\)

+ \(2\sqrt{15}\) = \(\sqrt{60}\)

\(\sqrt{60}\) > \(\sqrt{59}\)

Vậy: \(2\sqrt{15}\) > \(\sqrt{59}\)

3) \(2\sqrt{2}-1\) và 2

\(giống\left(-1\right)\left\{{}\begin{matrix}3-1\\2\sqrt{2}-1\end{matrix}\right.\)

So sánh: 3 và \(2\sqrt{2}\)

+ 3 = \(\sqrt{9}\)

+ \(2\sqrt{2}=\sqrt{8}\)

\(\sqrt{8}\) < \(\sqrt{9}\)

\(\sqrt{8}\) -1 < \(\sqrt{9}\) -1

\(2\sqrt{2}\) - 1 < 3 - 1

Vậy: \(2\sqrt{2}-1< 2\)

4) \(\frac{\sqrt{3}}{2}\) và 1

+ 1 = \(\frac{2}{2}\)

\(\frac{\sqrt{3}}{2}\) < \(\frac{2}{2}\)

Vậy: \(\frac{\sqrt{3}}{2}\) < 1

5) \(\frac{-\sqrt{10}}{2}\)\(-2\sqrt{5}\)

+ \(-2\sqrt{5}\) = \(\frac{-4\sqrt{5}}{2}\) = \(\frac{-\sqrt{80}}{2}\)

\(\frac{-\sqrt{10}}{2}\) > \(\frac{-\sqrt{80}}{2}\)

Vậy: \(\frac{-\sqrt{10}}{2}\) > \(-2\sqrt{5}\)

Bình luận (1)

Các câu hỏi tương tự
MH
Xem chi tiết
NL
Xem chi tiết
NN
Xem chi tiết
FG
Xem chi tiết
NL
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết
TH
Xem chi tiết
NH
Xem chi tiết