Bài 1 rút gọn biểu thức
a, A =\(\sqrt{1-4a+4a^2}-2a\)
b, B=\(x-2y-\sqrt{x_{ }^2-4xy+4y^2}\)
c, C=\(x^2+\sqrt{x^4-8x^2+16}\)
d,D=\(2x-1-\dfrac{\sqrt{x^2-10x+25}}{x-5}\)
e, E=\(\dfrac{\sqrt{x^4-4x^2+4}}{x^2-2}\)
f, F=\(\sqrt{\left(x-4\right)^2}+\dfrac{x-4}{\sqrt{x^2-8x+16}}\)
Bài 2 cho biểu thức A=\(\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)
a, Với giá trị nào của x thì A có nghĩa
b,Tính A nếu x lớn hơn hoặc bằng \(\sqrt{2}\)
Bài 3 cho 3 số dương x, y, z thỏa mãn điều kiện : xy+yz+zx=1 tính
A= \(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
BTVN nhiều nhỉ?
a,A=-1
b,B=2x-4y
c,C=2x^2-4
Bài 1:
a: \(A=\left|2a-1\right|-2a\)
TH1: a>=1/2
A=2a-1-2a=-1
TH2: a<1/2
A=1-2a-2a=1-4a
b: \(B=x-2y-\left|x-2y\right|\)
TH1: x>=2y
A=x-2y-x+2y=0
TH2: x<2y
A=x-2y+x-2y=2x-4y
c: \(=x^2+\left|x^2-4\right|\)
TH1: x>=2 hoặc x<=-2
\(A=x^2+x^2-4=2x^2-4\)
TH2: -2<x<2
\(A=x^2+4-x^2=4\)
d: \(D=2x-1-\dfrac{\left|x-5\right|}{x-5}\)
TH1: x>5
\(D=2x-1-1=2x-2\)
TH2: x<5
D=2x-1+1=2x