Bài 8: Rút gọn biểu thức chứa căn bậc hai

H24

Rút gọn biểu thức

a,\(\frac{1}{\left(2\sqrt{x}-2\right)}-\frac{1}{\left(2\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(1-x\right)}\)

b, \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)

c, \(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

NT
12 tháng 10 2022 lúc 16:04

a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)

b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
ND
Xem chi tiết
NA
Xem chi tiết
LB
Xem chi tiết
EO
Xem chi tiết
NN
Xem chi tiết