Bài 6: Biến đối đơn giản biểu thức chứa căn bậc hai

NP

B1 Chứng minh rằng

a)cho a,b,c=0 và a;b;c khác 0

Cmt \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\left(\right)\)/\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)/

b) cho a=b+c và a;b;c là các số hữu tỉ khác 0

Cmr\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}+\)là 1 số hữu tỉ

c) cho a;b;c là các số hữu tỉ khác 0

Cmr √1/(a-b)^2 + 1/(b-c)^2 + 1/(c-a)^2 là 1 số hữu tỉ (dấu căn kéo dài hết ạ

d) cho a;b;c là 3 số hữu tỉ Tm ab-ba+ca=1

Cmr A= √(a^2+1)(b^2+1)(c^2+1) là 1 số hữu tỉ (dấu căn kéo dài hết ạ)

Giúp mình với !!

AH
26 tháng 6 2019 lúc 15:57

Lời giải:
Bạn chú ý lần sau gõ đề bài bằng công thức toán. Việc gõ đề thiếu/ sai/ không đúng công thức khiến người sửa rất mệt.

a) Theo hằng đẳng thức đáng nhớ:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\left(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}\right)}\)

\(\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-\frac{2(a+b+c)}{abc}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2-0}\) (do $a+b+c=0$)

\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{c}|\)

b) Theo điều kiện đề bài:

\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2}{b^2c^2}}=\sqrt{\frac{1}{(b+c)^2}+\frac{b^2+c^2+2bc}{b^2c^2}-\frac{2}{bc}}\)

\(=\sqrt{\frac{1}{(b+c)^2}+(\frac{b+c}{bc})^2-\frac{2}{bc}}=\sqrt{(\frac{1}{b+c}-\frac{b+c}{bc})^2}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\)

\(a,b,c\in\mathbb{Q}\Rightarrow \)\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\left|\frac{1}{b+c}-\frac{b+c}{bc}\right|\in\mathbb{Q}\)

Ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
DD
Xem chi tiết
LN
Xem chi tiết
YP
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
PM
Xem chi tiết
TT
Xem chi tiết
LS
Xem chi tiết
NH
Xem chi tiết