a) ĐK:\(m^2-4m+4\ge0\left(LĐ\right)\)
Theo hệ thức Viet:\(x_1+x_2=m;x_1x_2=m-1\)
\(R=\frac{2m-2+3}{m^2-2m+2+2\left(1+m-1\right)}\)
\(=\frac{2m+1}{m^2+2}\)
\(\Rightarrow Rm^2+2R-2m-1=0\)
Để pt có ng0:\(1-R\left(2R-1\right)\ge0\)
\(\Leftrightarrow-2R^2+R+1\ge0\)
\(\Leftrightarrow\frac{-1}{2}\le R\le1\)
\(R_{max}=1\)
b) Trừ đi rồi tìm m.