A= (2+4+6+...+100)^2
A=2550^2
A=6502500
bài còn lại cũng vậy
A = 22 + 42 + 62 + ... 982+ 1002
=22 ( 12 + 22 +32+ ... + 492+502)
=\(4.\dfrac{50.\left(50+1\right)\left(2.50+1\right)}{6}=171700\)
Bài cuối :
\(A=1^2+3^2+5^2+7^2+99^2\)
\(A=1+2^2+3^2+4^2+5^2+...+99^2\)
\(A=1+2^2+3^2+4^2+5^2+...+99^2\)
\(A=1+2.\left(3-1\right)+3.\left(4-1\right)+...+99.\left(100-1\right)\)
\(A=\left(2.3+3.4+...+99.100\right)-\left(1+2+3+...+99\right)\)
\(A=\dfrac{99.100.101}{3}-\dfrac{99.\left(99+1\right)}{2}\)
\(A=333300-4950\)
\(A=328350\)