Bài 2: Căn thức bậc hai và hằng đẳng thức căn bậc hai của bình phương

KG

1.Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)\)=1

Tính S=x+y

LH
25 tháng 6 2021 lúc 21:17

Có \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(x-\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)

\(\Leftrightarrow\left[x^2-\left(\sqrt{x^2+1}\right)^2\right]\left(y+\sqrt{y^2+1}\right)=x-\sqrt{x^2+1}\)

\(\Leftrightarrow-y-\sqrt{y^2+1}=x-\sqrt{x^2+1}\) (1)

Lại có:\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)\left(y-\sqrt{y^2+1}\right)=y-\sqrt{y^2+1}\)

\(\Leftrightarrow\left(x+\sqrt{x^2+1}\right)\left[y^2-\left(\sqrt{y^2+1}\right)^2\right]=y-\sqrt{y^2+1}\)

\(\Leftrightarrow-x-\sqrt{x^2+1}=y-\sqrt{y^2+1}\)  (2)

Từ (1) và (2) cộng vế với vế có:

\(-\left(y+x\right)-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)=x+y-\left(\sqrt{x^2+1}+\sqrt{y^2+1}\right)\)

\(\Leftrightarrow2\left(x+y\right)=0\)

\(\Leftrightarrow x+y=0\) hay S=0

Vậy...

Bình luận (0)

Các câu hỏi tương tự
KG
Xem chi tiết
TA
Xem chi tiết
PN
Xem chi tiết
TD
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
HS
Xem chi tiết