Lời giải:
Ta có:
\(xy+\sqrt{(x^2+1)(y^2+1)}=2018\)
\(\Rightarrow (xy+\sqrt{(x^2+1)(y^2+1)})^2=2018^2\)
\(\Leftrightarrow x^2y^2+(x^2+1)(y^2+1)+2xy\sqrt{(x^2+1)(y^2+1)}=2018^2\)
\(\Leftrightarrow 2x^2y^2+x^2+y^2+2xy\sqrt{(x^2+1)(y^2+1)}=2018^2-1\)
\(\Leftrightarrow x^2(y^2+1)+y^2(x^2+1)+2xy\sqrt{(x^2+1)(y^2+1)}=2018^2-1\)
\(\Leftrightarrow (x\sqrt{y^2+1}+y\sqrt{x^2+1})^2=2018^2-1\)
\(\Leftrightarrow T^2=2018^2-1\)
Do đó: \(T=\pm \sqrt{2018^2-1}\)