Bài 5: Ôn tập chương Dãy số. Cấp số cộng và cấp số nhân.

JP

1. Tìm \(x\) để 3 số \(\left\{{}\begin{matrix}a=x+1\\b=3x-2\\c=x^2-1\end{matrix}\right.\) lập thành cấp số cộng.

2. Tìm số hạng đầu, công sai, số hạng thứ 15 và tổng 15 số hạng đầu tiên của cấp số cộng với:

\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)

NT
7 tháng 12 2023 lúc 19:59

Câu 2:

\(\left\{{}\begin{matrix}u_1+u_5-u_3=10\\u_1+u_6=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+u_1+4d-u_1-2d=10\\u_1+u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1+2d=10\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2u_1+4d=20\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2u_1+4d-2u_1-5d=20-17\\2u_1+5d=17\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-d=3\\2u_1+5d=17\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d=-3\\2u_1=17-5d=17+5\cdot3=32\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}u_1=16\\d=-3\end{matrix}\right.\)

Câu 1:

Để a,b,c lập thành cấp số cộng thì

\(\left[{}\begin{matrix}a+c=2b\\a+b=2c\\b+c=2a\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x+1+x^2-1=2\cdot\left(3x-2\right)\\x+1+3x-2=2\left(x^2-1\right)\\x^2-1+3x-2=2\left(x+1\right)\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2+x-6x+4=0\\2x^2-2=4x-1\\x^2+3x-3-2x-2=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x^2-5x+4=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}\left(x-1\right)\left(x-4\right)=0\\2x^2-4x-1=0\\x^2+x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left\{1;4\right\}\\x\in\left\{\dfrac{2+\sqrt{6}}{2};\dfrac{2-\sqrt{6}}{2}\right\}\\x\in\left\{\dfrac{-1+\sqrt{21}}{2};\dfrac{-1-\sqrt{21}}{2}\right\}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
SK
Xem chi tiết
NP
Xem chi tiết
SK
Xem chi tiết
XG
Xem chi tiết
TC
Xem chi tiết
SK
Xem chi tiết
SK
Xem chi tiết
CD
Xem chi tiết
1L
Xem chi tiết