Bài 4: Ôn tập chương Hàm số lượng giác và phương trình lượng giác

LN

1) tìm nghiệm của phương trình: \(\frac{cos4x}{cos2x}=tan2x\) trong khoảng \(\left(0;\frac{\pi}{2}\right)\)

2) tìm tất cả các nghiệm của phương trình: sin8x+cos4x=1+2sin2x.cos6x thuộc \(\left(-\pi;\pi\right)\)

3) tìm tất cả các nghiệm của phương trình: \(\frac{\sqrt{3}sin3x-2sinx.sin2x-cosx}{sinx}=0\) thuộc \(\left[-\frac{\pi}{2};\frac{\pi}{2}\right]\)

4) tìm tất cả các nghiệm của phương trình: sinx+ sin2x+ sin3x=0 thuộc \(\left(0;\pi\right)\)

HH
17 tháng 8 2019 lúc 15:01

1/ ĐKXĐ: \(\cos2x\ne0\)

\(\frac{\cos4x}{\cos2x}=\frac{\sin2x}{\cos2x}\)\(\Leftrightarrow\cos4x-\sin2x=0\)

\(\Leftrightarrow2\cos^22x-1-\sin2x=0\)

\(\Leftrightarrow2-2\sin^22x-1-\sin2x=0\)

\(\Leftrightarrow2\sin^22x+\sin2x-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sin2x=\frac{1}{2}=\sin\frac{\pi}{6}\\\sin2x=-1=\sin\frac{-\pi}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{6}+2k\pi\\2x=\frac{5\pi}{6}+2k\pi\\2x=\frac{-\pi}{2}+2k\pi\left(l\right)\\2x=\frac{3\pi}{2}+2k\pi\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{12}+k\pi\\x=\frac{5\pi}{12}+k\pi\end{matrix}\right.\)

Bình luận (0)
HH
17 tháng 8 2019 lúc 15:31

2/ \(\sin2.4x+\cos4x=1+2\sin2x.\cos\left(2x+4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\left(\cos2x.\cos4x-\sin2x.\sin4x\right)\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+2\sin2x.\cos2x.\cos4x-2\sin^22x.\sin4x\)

\(\Leftrightarrow2\sin4x.\cos4x+\cos4x=1+\sin4x.\cos4x-\sin4x+\cos4x.\sin4x\)

Đến đây bn tự giải nốt nhé, lm kiểu bthg thôi bởi vì đã quy về hết sin4x và cos4x r

Bình luận (0)

Các câu hỏi tương tự
HB
Xem chi tiết
LN
Xem chi tiết
LN
Xem chi tiết
MA
Xem chi tiết
JP
Xem chi tiết
TN
Xem chi tiết
TN
Xem chi tiết
LN
Xem chi tiết
JP
Xem chi tiết