Bài 8: Rút gọn biểu thức chứa căn bậc hai

NH

1. Cho bt P= (1/√x+2 + 1/√x-2 ) . √x-2/√x với x>0, x khác 4

a) rút gọn P

b) tìm x để P>1/3

c) tìm các giá trị thực của x để Q=9/2P có giá trị nguyên

2. Cho 2 biểu thức

A= 1-√x / 1+√ x và B= ( 15-√x/ x-25 + 2/√x+5) : √x+1/√ x-5 với x lớn hơn hoặc bằng 0, x khác 25

a) tính giá trị của A khi x= 6-2√5

b) rút gọn B

c) tìm a để pt A-B=a có nghiệm

LT
1 tháng 9 2017 lúc 10:57

1. a)

P=\(\left(\dfrac{1}{\sqrt{x}+2}+\dfrac{1}{\sqrt{x}-2}\right).\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\dfrac{\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}}\)

=\(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}.\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+2}\)

b) ta có : P>1/3

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}>\dfrac{1}{3}\Leftrightarrow\dfrac{2}{\sqrt{x}+2}-\dfrac{1}{3}>0\)

\(\Leftrightarrow\dfrac{6-\sqrt{x}-2}{\sqrt{x}+2}>0\Leftrightarrow\dfrac{4-\sqrt{x}}{\sqrt{x}+2}>0\)

\(\Leftrightarrow4-\sqrt{x}>0\Leftrightarrow-\sqrt{x}>-4\Leftrightarrow x< 16\)

kết hợp đk ta có :0<x<16 (trừ 4)

vậy 0<x<16 (trừ 4 ) khi P>1/3

c) ta có : Q=9/2P

\(\Leftrightarrow\dfrac{2}{\sqrt{x}+2}.\dfrac{9}{2}\Leftrightarrow\dfrac{9}{\sqrt{x}+2}\)

để Q nguyên thì \(\sqrt{x}+2\)phải là ước của 9

\(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1,\pm3,\pm9\right\}\)

vậy \(x\in\left\{1,49\right\}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
LB
Xem chi tiết
TN
Xem chi tiết
TD
Xem chi tiết
UT
Xem chi tiết