Bài 8: Rút gọn biểu thức chứa căn bậc hai

NT
23 tháng 11 2023 lúc 5:46

Bài 1:

a: \(x^2=9\)

=>\(x^2=3^2=\left(-3\right)^2\)

=>\(x=\pm3\)

b: \(9x^2=16\)

=>\(\left[{}\begin{matrix}3x=4\\3x=-4\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=-\dfrac{4}{3}\end{matrix}\right.\)

c: \(\left(x+2\right)^2=16\)

=>\(\left[{}\begin{matrix}x+2=4\\x+2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)

d: \(x^2-9+\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x+3\right)+\left(x-3\right)=0\)

=>\(\left(x-3\right)\left(x+3+1\right)=0\)

=>\(\left(x-3\right)\left(x+4\right)=0\)

=>\(\left[{}\begin{matrix}x-3=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)

Bài 2:

a: ĐKXĐ: x>0

\(\sqrt{x}=21\)

=>\(x=21^2\)

=>\(x=441\)

b: ĐKXĐ: x>=0

\(2\sqrt{x}=-1\)

=>\(\sqrt{x}=-\dfrac{1}{2}\)(vô lý)

Vậy: \(x\in\varnothing\)

c: ĐKXĐ: x>=0

\(\left(\sqrt{x}+1\right)^2=4\)

=>\(\left[{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=-3\left(loại\right)\end{matrix}\right.\)

=>\(\sqrt{x}=1\)

=>x=1(nhận)

d: ĐKXĐ: x>=0

\(\left|\sqrt{x}-1\right|=2\)

=>\(\left[{}\begin{matrix}\sqrt{x}-1=2\\\sqrt{x}-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=3\\\sqrt{x}=-1\left(loại\right)\end{matrix}\right.\)

=>\(\sqrt{x}=3\)

=>x=9(nhận)

e: ĐKXĐ: \(x\in R\)

\(\sqrt{x^2-6x+9}=5x-2\)

=>\(\sqrt{\left(x-3\right)^2}=5x-2\)

=>\(\left\{{}\begin{matrix}5x-2>=0\\\left(5x-2\right)^2=\left(x-3\right)^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{5}\\\left(5x-2\right)^2-\left(x-3\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{5}\\\left(5x-2-x+3\right)\left(5x-2+x-3\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x>=\dfrac{2}{5}\\\left(4x+1\right)\left(6x-5\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{2}{5}\\\left[{}\begin{matrix}x=-\dfrac{1}{4}\left(loại\right)\\x=\dfrac{5}{6}\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

Vậy: x=5/6

f: \(\sqrt{\left(x-1\right)^2}=3-2x\)

=>\(\left\{{}\begin{matrix}3-2x>=0\\\left(3-2x\right)^2=\left(x-1\right)^2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3\right)^2-\left(x-1\right)^2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(2x-3-x+1\right)\left(2x-3+x-1\right)=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left(x-2\right)\left(3x-4\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =\dfrac{3}{2}\\\left[{}\begin{matrix}x=2\left(loại\right)\\x=\dfrac{4}{3}\left(nhận\right)\end{matrix}\right.\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
HH
Xem chi tiết
NN
Xem chi tiết
AP
Xem chi tiết
VV
Xem chi tiết
NT
Xem chi tiết
DH
Xem chi tiết
NO
Xem chi tiết
TH
Xem chi tiết
DN
Xem chi tiết
LN
Xem chi tiết