\(\sqrt{144a}+3\sqrt{9a^2}+2a=\sqrt{12^2.a}+3\sqrt{\left(3a\right)^2}+2a\)
\(=12\sqrt{a}+3.\left|3a\right|+2a\)
\(=12\sqrt{a}+3.3a+2a\) ( do \(a\ge0\) )
\(=12\sqrt{a}+11a\)
\(\sqrt{\dfrac{1}{9}a}-\sqrt{\dfrac{2}{50}x}+3\sqrt{\dfrac{4}{16}x}\)
\(=\sqrt{\left(\dfrac{1}{3}\right)^2x}-\sqrt{\left(\dfrac{1}{5}\right)^2x}+3\sqrt{\left(\dfrac{2}{4}\right)^2x}\)
\(=\dfrac{1}{3}\sqrt{x}-\dfrac{1}{5}\sqrt{x}+3.\dfrac{2}{4}\sqrt{x}=\dfrac{49}{30}\sqrt{x}\)
\(\sqrt{\dfrac{1}{9}x}-\sqrt{\dfrac{2}{50}x}+3\sqrt{\dfrac{4}{16}x}\)
\(=\sqrt{\left(\dfrac{1}{3}\right)^2x}-\sqrt{\dfrac{1}{25}x}+3\sqrt{\dfrac{1}{4}x}\)
\(=\dfrac{1}{3}\sqrt{x}-\sqrt{\left(\dfrac{1}{5}\right)^2x}+3\sqrt{\left(\dfrac{1}{2}\right)^2x}\)
\(=\dfrac{1}{3}\sqrt{x}-\dfrac{1}{5}\sqrt{x}+3\cdot\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{1}{3}\sqrt{x}-\dfrac{1}{5}\sqrt{x}+\dfrac{3}{2}\sqrt{x}\)
\(=\left(\dfrac{1}{3}+\dfrac{3}{2}-\dfrac{1}{5}\right)\sqrt{x}\)
\(=\dfrac{49}{30}\sqrt{x}\)
\(\sqrt{144a}+3\sqrt{9a^2}+2a\)
\(=\sqrt{12^2\cdot a}+3\cdot\sqrt{3^2\cdot a^2}+2a\)
\(=12\sqrt{a}+3\cdot\left|3a\right|+2a\)
\(=12\sqrt{a}+3\cdot3a+2a\)
\(=12\sqrt{a}+9a+2a\)
\(=12\sqrt{a}+11a\)