Hệ có chứa một phường trình đẳng cấp (thuần nhất)

H24
23 tháng 3 2021 lúc 12:35

a, Với $m=0$ phương trình $(1)$ trở thành:

$|x^2-2x|=x+1$

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x=x+1\\x^2-2x=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x=1\\x^2-x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4x^2-12x+9=13\\\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\left(2x-3\right)^2=13\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{13}+3}{2}\\x=\dfrac{-\sqrt{13}+3}{2}\end{matrix}\right.\)

b, $pt(1)⇔$ \(\left[{}\begin{matrix}x^2-2x+m=x+1\\x^2-2x+m=-x-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2-3x+m-1=0\\x^2-x+m+1=0\end{matrix}\right.\)

Nên để pt (1) có 4 nghiệm phân biệt thì 2 phương trình trên phải có 2 nghiệm phân biệt tức $\triangle$ mỗi phương trình phải $>0$

tức là \(\left[{}\begin{matrix}\left(-3\right)^2-4.1.\left(m-1\right)>0\\\left(-1\right)^2-4.1\left(m+1\right)>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4m< 5\\4m< -3\end{matrix}\right.\Leftrightarrow m< \dfrac{-3}{4}\)

Vậy $m<\dfrac{-3}{4}$ t/m đề 

Bình luận (1)

Các câu hỏi tương tự
TP
Xem chi tiết
TH
Xem chi tiết
NY
Xem chi tiết
LM
Xem chi tiết
DY
Xem chi tiết
H24
Xem chi tiết
HT
Xem chi tiết