Bài 2: Hình thang

SK
Hướng dẫn giải Thảo luận (3)

Hình thang

nên \(\widehat{A}_1+\widehat{D}_1=90^0\). \(\Delta ADE\)\(\widehat{A}_1+\widehat{D}_1=90^0\) nên \(\widehat{AED}=90^0\). Vậy \(AE\perp DE\)

Trả lời bởi Nguyen Thuy Hoa
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)

Hình thang

Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)

Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)

\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)

\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)

Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.

Trả lời bởi Dũng Nguyễn
SK
Hướng dẫn giải Thảo luận (3)
Kẻ đường cao BH (H thuộc CD). Khi đó Tứ giác ABHD là hình vuông (Tứ giác có 3 góc vuông và hai cạnh kề bằng nhau). Suy ra BH = AB = 2 Trong tam giác vuông BHC có BH =1/2 BC nên tam giác BHC là nửa tam giác đều. Suy ra \(\widehat{HBC}=60^0va\widehat{C}=30^o\) Vậy các góc của hình thang là: \(\widehat{A}=\widehat{D}=90^o;\widehat{B}=150^o;\widehat{C}=30^o\) Trả lời bởi lương thị hằng
SK
Hướng dẫn giải Thảo luận (3)

Vẽ hình thang ABCD nối B với D

Áp dụng bất đăng thức tam giác được:

BD + AB > AD (1)

BD + CD > BC (2)

Lấy (2) trừ (1) ta được:

BD + CD - BD - AB > BC - AD

\(\Leftrightarrow\) CD - AB > BC - AD

Trả lời bởi T.Thùy Ninh
SK
Hướng dẫn giải Thảo luận (3)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)

Ta có hình vẽ: A B C D

Vì AB//CD

nên góc A+ góc D = 180 độ (1)

góc A - góc D = 20 độ

=> góc A = 20 độ + góc D (2)

thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ

20 độ + 2 lần góc D = 180 độ

2 lần góc D = 180- 20 = 160 độ

góc D = 160/2 = 80 độ

=> góc A = góc D + 20 độ = 80+ 20= 100 độ

mà góc B = 2 lần góc C

góc B + góc C = 180 độ (trong cùng phía)

hay 2 lần góc C + góc C = 180 độ

3 lần góc C = 180 độ

góc C = 180/ 3= 60 độ

=> góc B = góc C . 2 = 60. 2= 120 độ

Vậy góc A= 100 độ

góc B = 120 độ

góc C = 60 độ

góc D = 80 độ

Trả lời bởi Nguyễn Ngân Hà
SK
Hướng dẫn giải Thảo luận (1)