Chứng minh rằng trong hình thang các tia phân giác của hai góc nhọn kề một cạnh bên vuông góc với nhau ?
Chứng minh rằng trong hình thang các tia phân giác của hai góc nhọn kề một cạnh bên vuông góc với nhau ?
Cho tam giác ABC. Các tia phân giác của các góc B và C cắt nhau ở I. Qua I kẻ đường thẳng song song với BC, cắt các cạnh AB và AC ở D và E
a) Tìm các hình thang trong hình vẽ
b) Chứng minh rằng hình thang BDEC có một cạnh đáy bằng tổng hai cạnh bên
Cho tam giác ABC vuông cân tại A. Ở phía ngoài tam giác ABC, vẽ tam giác BCD vuông cân tại B. Tứ giác ABCD là hình gì ? Vì sao ?
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.
Trả lời bởi Dũng NguyễnHình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^0;AB=AD=2cm;DC=4cm\)
Tính các góc của hình thang ?
Chứng minh rằng tổng hai cạnh bên của hình thang lớn hơn hiệu hai đáy ?
Vẽ hình thang ABCD nối B với D
Áp dụng bất đăng thức tam giác được:
BD + AB > AD (1)
BD + CD > BC (2)
Lấy (2) trừ (1) ta được:
BD + CD - BD - AB > BC - AD
\(\Leftrightarrow\) CD - AB > BC - AD
Trả lời bởi T.Thùy Ninh
Trên hình 3 có bao nhiêu hình thang ?
Hình thang ABCD (BC // AD) có \(\widehat{C}=3\widehat{D}\). Khẳng định nào dưới đây đúng ?
(A) \(\widehat{A}=45^0\) (B) \(\widehat{B}=45^0\) (C) \(\widehat{D}=45^0\) (D) \(\widehat{D}=60^0\)
Hình thang ABCD (AB //CD) có \(\widehat{A}-\widehat{D}=40^0;\widehat{A}=2\widehat{C}\). Tính các góc của hình thang ?
Ta có hình vẽ:
Vì AB//CD
nên góc A+ góc D = 180 độ (1)
góc A - góc D = 20 độ
=> góc A = 20 độ + góc D (2)
thay (1) vào (2) ta được: 20 độ + góc D + góc D = 180 độ
20 độ + 2 lần góc D = 180 độ
2 lần góc D = 180- 20 = 160 độ
góc D = 160/2 = 80 độ
=> góc A = góc D + 20 độ = 80+ 20= 100 độ
mà góc B = 2 lần góc C
góc B + góc C = 180 độ (trong cùng phía)
hay 2 lần góc C + góc C = 180 độ
3 lần góc C = 180 độ
góc C = 180/ 3= 60 độ
=> góc B = góc C . 2 = 60. 2= 120 độ
Vậy góc A= 100 độ
góc B = 120 độ
góc C = 60 độ
góc D = 80 độ
Trả lời bởi Nguyễn Ngân Hà
Cho tam giác ABC vuông cân tại A, BC = 2cm. Ở phía ngoài tam giác ABC vẽ tam giác ACE vuông cân tại E
a) Chứng minh rằng AECB là hình thang vuông
b) Tính các góc và các cạnh của hình thang AECB
nên \(\widehat{A}_1+\widehat{D}_1=90^0\). \(\Delta ADE\) có \(\widehat{A}_1+\widehat{D}_1=90^0\) nên \(\widehat{AED}=90^0\). Vậy \(AE\perp DE\)
Trả lời bởi Nguyen Thuy Hoa