Bài 2: Định lý đảo và hệ quả của định lý Talet

SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (2)

Lời giải

a)

Ta có \(\left\{{}\begin{matrix}MD=MB\\NA=NC\end{matrix}\right.\) \(\Rightarrow\)MN//DC

\(\Rightarrow\Delta OMN\approx\Delta ODC\approx OBA\)

Tỷ số đồng dạng

\(\dfrac{OM}{OD}=\dfrac{MN}{DC}=\dfrac{ON}{OC}\)\(\Rightarrow MN=\dfrac{OM}{OD}.DC=\dfrac{1}{4}.5,6=1,4\left(cm\right)\)

\(\dfrac{OM}{OB}=\dfrac{MN}{AB}\Rightarrow AB=\dfrac{OB}{OM}.MN=2MN=2,8\left(cm\right)\)

b)

\(\left\{{}\begin{matrix}CD=4MN\\AB=2MN\end{matrix}\right.\)

\(\Rightarrow\dfrac{CD-AB}{2}=\dfrac{4MN-2MN}{2}=MN\)

Trả lời bởi ngonhuminh
SK
Hướng dẫn giải Thảo luận (3)

Lời giải

a)

Kẻ đường thẳng d qua M // với hai đáy

cắt AD tại P cắt BC tại Q cắt AC tại N'

Ta c/m N trùng N'

xét \(\Delta_{DBC}\) có MQ là đường trung bình tam giác => BQ=QC

PQ//DC => PQ là đường TB của Hình Thang ABCD => P là trung điểm của AD

xét \(\Delta_{DAC}\) có PQ là đường trung bình =>AN'=N'C

=> N' trùng N => MN //AB//CD=> dpcm

b)

???

Trả lời bởi ngonhuminh
SK
Hướng dẫn giải Thảo luận (2)

Xét tam giác ABC ta có:

ON // AB (gt)

=> \(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(1\right)\)\(\dfrac{ON}{AB}=\dfrac{CO}{CA}\left(2\right)\)

Xét tam giác ABD ta có:

OM // AB (gt)

=> \(\dfrac{OM}{AB}=\dfrac{DO}{DB}\left(2\right)\)

Vì AB // CD nên \(\dfrac{DO}{DB}=\dfrac{CO}{CA}\left(3\right)\)

Từ (1), (2) và (3) suy ra:

\(\dfrac{ON}{AB}=\dfrac{OM}{AB}=>OM=ON\)

Vậy OM = ON.

Trả lời bởi Dương Nguyễn
SK
Hướng dẫn giải Thảo luận (1)
SK
Hướng dẫn giải Thảo luận (1)