Tính x trong hình 24 và làm tròn kết quả đến chữ số thập phân thứ nhất
Tính x trong hình 24 và làm tròn kết quả đến chữ số thập phân thứ nhất
Tam giác ABC có độ dài các cạnh AB = m, AC = n và AD là đường phân giác. Chứng minh rằng tỉ số diện tích của tam giác ABD và diện tích của tam ACD bằng \(\dfrac{m}{n}\) ?
Kẻ AH ⊥ BC
Ta có:
SABD = AH.BD
SADC = AH.DC
=> = =
Mặt khác: AD là đường phân giác của ∆ABC
=> = = .
Vậy =
Trả lời bởi Tuyết Nhi MelodyCho tam giác ABC với đường trung tuyến AM. Tia phân giác của góc AMB cắt cạnh AB ở D tia phân giác của góc AMC cắt cạnh AC ở E. Chứng minh rằng DE // BC (h.25)
Ta có MD là đường phân giác của tam giác ABM
=> = (1)
ME là đường phân giác của tam giác ACM
=> = (2)
Mà MB = MC( AM là đường trung tuyến)
=> = (3)
từ 1,2,3 => = => DE // BC( Định lí Talet đảo)
Trả lời bởi Tuyết Nhi MelodyTam giác ABC có AB = 5cm, AC = 6cm và BC = 7cm. Tia phân giác của góc BAC cắt cạnh BC tại E. Tính các đoạn EB, EC ?
AE là đường phân giác của tam giác ABC nên
=
Áp dụng tính chất tỉ lệ thức
= = =
=> EB = =
EC = BC- BE ≈ 3,8
Trả lời bởi Tuyết Nhi MelodyCho hình thang ABCD (AB //CD)
Đường thẳng a song song với DC, cắt các cạnh AD và BC theo thứ tự tại E và F
Chứng minh rằng :
a) \(\dfrac{AE}{ED}=\dfrac{BF}{FC}\)
b) \(\dfrac{AE}{AD}=\dfrac{BF}{BC}\)
c) \(\dfrac{DE}{DA}=\dfrac{CF}{CB}\)
Giải:
a) Nối AC cắt EF tại O
∆ADC có EO // DC => = (1)
∆ABC có OF // AB => = (2)
Từ 1 và 2 => =
b) Từ = => =
hay =
c) Từ = => = Trả lời bởi Tuyết Nhi Melody
Cho hình thang ABCD (AB//CD). Hai đường chéo AC và BD cắt nhau tại O. Đường thẳng a qua O và song song với đáy của hình thang cắt các cạnh bên AD, BC theo thứ tự tại E và F (h.26)
Chứng minh rằng OE = OF
Giải:
∆ADC có OE // OC nên
=
∆BDC có OF // DC nên =
Mà AB // CD => = (câu b bài 19)
Vậy = nên OE = OF.
Trả lời bởi Tuyết Nhi Melodya) Cho tam giác ABC với đường trung tuyến AM và đường phân giác AD. Tính diện tích tam giác ADM, biết AB = m, AC = n (n > m) và diện tích của tam giác ABC là S
b) Cho n = 7cm, m = 3cm. Hỏi diện tích tam giác ADM chiếm bao nhiêu phần trăm diện tích tam giác ABC ?
Giải:
Ta có AD là đường phân giác của ∆ ABC nên
= = (kết quả ở bài 16)
=> =
hay = => = .
Giả sử AB < AC( m<n) vì AD là đường phân giác, AM là đường trung tuyến kẻ từ A nên AD nằm giữa AB và AM.
=> = -
=> = S -
Đố :
Hình 27 cho biết 6 góc bằng nhau :
\(\widehat{O}_1=\widehat{O}_2=\widehat{O}_3=\widehat{O}_4=\widehat{O}_5=\widehat{O}_6\)
Kích thước các đoạn thẳng đã được ghi trên hình. Hãy thiết lập những tỉ lệ thức từ các kích thước đã cho.
Giải
OB là tia phân giác trong của ∆OBC => =
OC là tia phân giác trong của ∆OBD => =
OD là tia phân giác trong của ∆OCE => =
OE là tia phân giác trong của ∆ODF => =
OC là tia phân giác của ∆ACE => = hay =
OE là phân giác của ∆OCG => =
OD là phân giác của ∆AOG => =
OD là phân giác của ∆OBF => =
Trả lời bởi Tuyết Nhi MelodyTam giác ABC có AB = 15cm, AC = 20 cm, BC = 25 cm. Đường phân giác góc BAC cắt cạnh ABC tại D (h.14)
a) Tính độ dài các đoạn thẳng DB và DC
b) Tính tỉ số diện tích của hai tam giác ABD và ACD
Tam giác ABC có các đường phân giác AD,BE và CF (h.15)
Chứng minh rằng :
\(\dfrac{DB}{DC}.\dfrac{EC}{EA}.\dfrac{FA}{FB}=1\)
a)Vì AD là phân giác của góc BAC
=>\(\dfrac{DC}{BD}=\dfrac{AC}{AB}\) <=>\(\dfrac{x}{3.5}=\dfrac{7.2}{4.5}\) <=>x=\(\dfrac{7.2X3.5}{4.5}\) <=>x=5.6
b)vì PQ là phân giác của góc MPN
=>\(\dfrac{QN}{MQ}=\dfrac{PN}{PM}\) <=>
Trả lời bởi Trần Quân