Cho hình vuông ABCD. Gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. Kẻ \(FH\perp AE\left(H\in AE\right)\), FH cắt BC ở G
Tính số đo góc FAG ?
Cho hình vuông ABCD. Gọi E là một điểm nằm giữa C và D. Tia phân giác của góc DAE cắt CD ở F. Kẻ \(FH\perp AE\left(H\in AE\right)\), FH cắt BC ở G
Tính số đo góc FAG ?
Cho một hình chữ nhật có hai cạnh kề không bằng nhau. Chứng minh rằng các tia phân giác của các góc của hình chữ nhật đó cắt nhau tạo thành một hình vuông ?
Cho hình vuông ABCD. Gọi E, F theo thứ tự là trung điểm của AB, BC
a) Chứng minh rằng CE vuông góc với DF
b) Gọi M là giao điểm của CE và DF. Chứng minh rằng AM = AD
Hướng dẫn : Gọi K là trung điểm của CD. Chứng minh rằng KA // CE
Cho hình vuông DEBC. Trên cạnh CD lấy điểm A, trên tia đối của tia DC lấy điển K, trên tia đối của tia ED lấy điểm M sao cho CA = DK = EM. Vẽ hình vuông DKIH (H thuộc cạnh DE).
Chứng minh rằng ABMI là hình vuông ?
Chứng minh các tam giác vuông ACB, IKA, IHM, MEB bằng nhau để suy ra AB = IA = IM = MB. Sau đó chứng minh \(\widehat{IAB}=90^0\)
Trả lời bởi Nguyen Thuy HoaCho hình vuông ABCD, điểm E thuộc CD. Tia phân giác của góc ABE cắt ở AD ở K.
Chứng minh rằng AK + CE = BE ?
Cho hình vuông ABCD. Vẽ điểm E trong hình vuông sao cho \(\widehat{EDC}=\widehat{ECD}=15^0\)
a) Vẽ điểm F trong hình vuông sao cho \(\widehat{FAD}=\widehat{FDA}=15^0\)
Chứng minh tam giác DEF là tam giác đều
b) Chứng minh rằng tam giác ABE là tam giác đều
Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Các tia phân giác của bốn góc vuông có đỉnh O cắt các cạnh AB, BC, CD, DA theo thứ tự ở E, F, G, H. Tứ giác EFGH là hình gì ?
Cho hình vuông ABCD. Trên cạnh DC lấy điểm E, trên cạnh BC láy điểm F sao cho DE = CF.
Chứng minh rằng AE = DF và \(AE\perp DF\) ?
\(\Delta ADE=\Delta DCF\left(c-g-c\right)\), suy ra AE = DF và \(\widehat{DAE}=\widehat{CDF}.\)
Ta lại có \(\widehat{CDF}+\widehat{ADF}=90^o\) nên \(\widehat{DAE}+\widehat{ADF}=90^o.\) Do đó
AE \(\perp\) DF.
Trả lời bởi Hải NgânHình vuông có chu vi bằng 8 thì đường chéo bằng :
(A) \(\sqrt{2}\) (B) \(\sqrt{32}\) (C) \(\sqrt{8}\) (D) \(\sqrt{2}\)
Hãy chọn phương án đúng ?
Cho tam giác ABC. Vẽ ở ngoài tam giác các hình vuông ABDE, ACFH
a) Chứng minh rằng \(EC=BH,EC\perp BH\)
b) Gọi M, N theo thứ tự là tâm của các hình vuông ABDE, ACFH. Gọi I là trung điểm của BC. Tam giác MIN là tam giác gì ? Vì sao ?