cho tam giác abc vuông tại a, ab<ac, ah là đuờng cao. Gọi d,e,f là trung điểm của ab,ac,bc. chứng minh de la đuờng trung trực cua ah
cho tam giác abc vuông tại a, ab<ac, ah là đuờng cao. Gọi d,e,f là trung điểm của ab,ac,bc. chứng minh de la đuờng trung trực cua ah
ΔHAB vuông tại H
mà HD là trung tuyến
nên HD=AD
ΔHAC vuông tại H
mà HE là trung tuyến
nên EA=EH
EA=EH
DA=DH
=>ED là trung trực của AH
: Cho hình thang ABCD (AB // CD), các tia phân giác của góc A, góc D cắt nhau tại M thuộc cạnh BC. Cho biết AD = 7cm. Chứng minh rằng một trong hai đáy của hình thang có độ dài nhỏ hơn 4cm cứu với
cho hình bình hành ABCD có K là trung điểm AB,I là trung điểm CD.BD lần lượt cắt AI và CK tại M và N. Gọi O là giao điểm của hai đường chéo AC và BD.
a)Tứ giác AKID,BKIC,AKCI là hình gì
b)c/m DM=MN=NB
c)I,O,K thằng hàng
d)AI cắt DK tại E,BI cắt CK tại F, c/m KEIF là hình bình hành và FE =AK
cho hình thang ABCD, AB//CD. M là trung điểm của CD, I là giao điểm của AM và BD; K là giao điểm của BM và AC. gọi O là giao điểm AC và BD.MO cắt AB tại N; BO cắt BC tại S. CMR: N là trung điểm của AB. A;D;S thẳng hàng
Cho hình chữ nhật ABCD có AB=12cm, BC=9cm. Gọi H là chân đường vuông góc kẻ từ A xuống BD.
a/ Chứng minh tam giác AHB = tam giác BCD
b/ Tính độ dài đoạn thẳng AH c/ gọi M N P lần lượt là trung điểm của BC AH DH. tứ giác BMPN là hình gì? vì sao?
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
góc ABH=góc BDC
=>ΔAHB đồng dạng với ΔBCD
b: BD=căn 9^2+12^2=15cm
AH=9*12/15=108/15=7,2cm
c: Xét ΔHAD có HN/HA=HP/HD
nên NP//AD và NP=AD/2
=>NP//BC và NP=BC/2
=>NP//BM và NP=BM
=>BNPM là hình bình hành
Cho hình chữ nhật ABCD, gọi H là chân đường vuông góc kẻ từ A đến BD. Gọi M và N theo thứ tự là trung điểm của các đoạn AH và DH.
a) Chứng minh MN//AD
b) Gọi I là trung điểm của cạnh BC, chứng minh tứ giác BMNI là hình bình hành
c) Chứng minh tam giác ANI vuông tại N
(ko dùng đg trung bình)
a: Xét ΔHAD có HM/HA=HN/HD
nên MN//AD
b: Xét ΔHAD có MN//AD
nên MN/AD=HM/HA=1/2
=>MN=1/2AD=1/2BC
=>MN=BI
mà MN//BI
nên BMNI là hình bình hành
cho hình bình hành ABCD có BC = 2AB và góc A = 60 độ . gọi E , F theo thứ tự là trung điểm của BC và AD.
a, tứ giác ECDF là hình gì . vì sao
b, tứ giác ABED là hình gì . vì sao c)gọi m là điểm đối xứng của a qua b.cm:bmcd là hình chữ nhật d)cm: m e d thảng hàng
a: Xét tứ giác ECDF có
EC//DF
EC=DF
EC=CD
=>ECDF là hình thoi
b: Xét ΔCED có CE=CD và góc C=60 độ
nên ΔCED đều
=>góc CED=60 độ
=>góc BED=120 độ
=>góc BED=góc B
Xét tứ giác ABED có
BE//AD
góc ABE=góc BED
=>ABED là hình thang cân
c: Xét ΔBAD có
BF là trung tuyến
BF=AD/2
=>ΔBAD vuông tại B
=>góc ABD=90 độ
=>góc MBD=90 độ
Xét tứ giác BMCD có
BM//CD
BM=CD
góc MBD=90 độ
=>BMCD là hình chữ nhật
d: BMCD là hình bình hành
=>BC cắt MD tại trung điểm của mỗi đường
=>M,E,D thẳng hàng
cho tứ giác ABCD có AC = BD, Gọi M, N , P, Q lần lượt là trung điểm của AB, BC, CD, DA
1) MN=NP=PQ=QM
2) CM MNPQ là hình thoi
1: Xét ΔABC có BM/BA=BN/BC=1/2
nên MN//AC và MN=1/2AC
Xét ΔADC có DP/DC=DQ/DA
nên QP//AC và QP/AC=DP/DC=1/2
=>QP=1/2AC
=>MN//PQ và MN=PQ
Xét ΔABD có AM/AB=AQ/AD=1/2
nên MQ/BD=AM/AB=1/2
=>MQ=1/2BD
Xét ΔCBD có CP/CD=CN/CB=1/2
nên NP=1/2BD
=>MQ=NP=1/2BD
mà BD=AC
nên MQ=NP=QP=MN
2: Xét tứ giác MNPQ có
MN//PQ
MN=PQ
MN=MQ
=>MNPQ là hình thoi
Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D a) Chứng minh : Tứ giác ADMH là hình chữ nhật B) Chứng minh : Tứ giác AMBE là hình thoi C) Gọi I là giao điểm của AM và DH , chứng minh ba điểm C;I;E thẳng hàng
a: góc ADM=góc AHM=góc DAH=90 độ
=>ADMH là hình chữ nhật
b: Xét ΔACB có
M là trung điểm của BC
MD//AC
=>D là trung điểm của AB
Xét tứ giác AMBE có
D là trung điểm chung của AB và ME
=>AMBE là hình bình hành
mà MA=MB
nên AMBE là hình thoi
c:ADMH là hcn
=>I là trung điểm chung của AM và DH
Xét tứ giác ACME có
ME//AC
ME=AC
=>ACME là hbh
mà I là trung điểm của AM
nên i là trung điểm của CE
=>C,I,E thẳng hàng