Giúp mình với
Trong mặt phẳng Oxy cho A (4;2) B (-2;4) 1) Tìm tọa độ điểm C trên trục hoành sao cho tam giác ABC vuông tại B 2) Tính chu vi và diện tích tam giác ABC 3) Tìm tọa độ D sao cho ABCD là hình chữ nhật
Giúp mình với
Trong mặt phẳng Oxy cho A (4;2) B (-2;4) 1) Tìm tọa độ điểm C trên trục hoành sao cho tam giác ABC vuông tại B 2) Tính chu vi và diện tích tam giác ABC 3) Tìm tọa độ D sao cho ABCD là hình chữ nhật
Gọi \(C\left(x;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-6;2\right)\\\overrightarrow{BC}=\left(x+2;-4\right)\end{matrix}\right.\)
Tam giác ABC vuông tại B \(\Leftrightarrow\overrightarrow{AB}.\overrightarrow{BC}=0\)
\(\Rightarrow-6\left(x+2\right)-8=0\) \(\Rightarrow x=-\dfrac{10}{3}\)
\(\Rightarrow C\left(-\dfrac{10}{3};0\right)\)
Bạn tự tính tọa độ \(\overrightarrow{AC};\overrightarrow{BC}\) từ đó suy ra độ dài 3 cạnh và tính được chu vi, diện tích
Do tam giác ABC vuông tại B nên ABCD là hcn khi \(\overrightarrow{AB}=\overrightarrow{DC}\)
Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(-\dfrac{10}{3}-x;-y\right)\)
\(\Rightarrow\left\{{}\begin{matrix}-\dfrac{10}{3}-x=-6\\-y=2\end{matrix}\right.\) \(\Rightarrow D\left(\dfrac{8}{3};-2\right)\)
cho hình thang vuông abcd đường cao ab = a, đáy lớn bc = 2a, đáy nhỏ ad = a
tính tích vô hướng \(\overrightarrow{AC}.\overrightarrow{BD}\) từ đó suy ra giá trị của cos (\(\overrightarrow{AC}.\overrightarrow{BD}\))
\(AC=\sqrt{AB^2+BC^2}=a\sqrt{5}\)
\(BD=\sqrt{AD^2+AB^2}=a\sqrt{2}\)
\(\overrightarrow{AC}.\overrightarrow{BD}=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)\left(\overrightarrow{BA}+\overrightarrow{AD}\right)\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AB}.\overrightarrow{AD}+\overrightarrow{BC}.\overrightarrow{BA}+\overrightarrow{BC}.\overrightarrow{AD}\)
\(=-\overrightarrow{AB}^2+\overrightarrow{AD}.2\overrightarrow{AD}=-\overrightarrow{AB}^2+2\overrightarrow{AD}^2\)
\(=-a^2+2a^2=a^2\)
\(cos\left(\overrightarrow{AC};\overrightarrow{BD}\right)=\dfrac{\overrightarrow{AC}.\overrightarrow{BD}}{AC.BD}=\dfrac{a^2}{a\sqrt{2}.a\sqrt{5}}=\dfrac{1}{\sqrt{10}}\)
Câu 1: giả sử:\(\overrightarrow{BD}-\overrightarrow{BA}=\overrightarrow{OC}-\overrightarrow{OB}\Leftrightarrow\overrightarrow{BA}+\overrightarrow{AD}-\overrightarrow{BA}=\overrightarrow{OC}+\overrightarrow{BO}\)
\(\Leftrightarrow\overrightarrow{AD}=\overrightarrow{BC}\)(luôn đúng vì ABCD lad hình bình hành)
giả sử: \(\overrightarrow{BC}-\overrightarrow{BD}+\overrightarrow{BA}=\overrightarrow{0}\Leftrightarrow\overrightarrow{BC}-\overrightarrow{BC}+\overrightarrow{DC}+\overrightarrow{BA}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BB}+\overrightarrow{DD}=\overrightarrow{0}\)(LUÔN ĐÚNG)
câu 2 :GIẢ SỬ:
\(\overrightarrow{AB}+\overrightarrow{OA}=\overrightarrow{OB}\Leftrightarrow\overrightarrow{AO}+\overrightarrow{OB}+\overrightarrow{OA}+\overrightarrow{BO}=\overrightarrow{0}\)(luôn đúng)
giả sử: \(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\\ \Leftrightarrow\overrightarrow{MB}+\overrightarrow{BA}+\overrightarrow{MD}+\overrightarrow{DC}=\overrightarrow{MB}+\overrightarrow{MD}\Leftrightarrow\overrightarrow{0}=\overrightarrow{0}\)
cho tam giác ABC , có A(-5;6) , trực tâm H(-3;2), M(0;1) là trung điểm BC . tổng hoành đọ và tung đọ của tâm đường tròn ngoai tiếp tam giác abc
A5
B2
C3
D4
\(\overrightarrow{AH}=\left(2;-4\right)\)
Gọi \(O\left(x;y\right)\) là tâm đường tròn ngoại tiếp
\(\Rightarrow\overrightarrow{OM}=\left(-x;1-y\right)\)
Ta có: \(\overrightarrow{AH}=2\overrightarrow{OM}\Rightarrow\left\{{}\begin{matrix}-2x=2\\2-2y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=3\end{matrix}\right.\) \(\Rightarrow x+y=2\)
Cho tam giác ABC và M là trung điểm BC.a) Chứng minh rằng: \(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{BM}+\overrightarrow{AC}\)b) Cho hai điểm E,K thỏa mãn: \(\overrightarrow{EA}=-3\overrightarrow{EM}\) và \(5\overrightarrow{AK}=3\overrightarrow{AC}\). Chứng minh ba điểm B,E,K thẳng hàng.
a.
\(\overrightarrow{AM}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CM}+\overrightarrow{BM}+\overrightarrow{MC}=\overrightarrow{AC}+\overrightarrow{BM}\)
b.
\(\overrightarrow{AE}=3\overrightarrow{EM}=3\overrightarrow{EA}+3\overrightarrow{AM}\Rightarrow4\overrightarrow{AE}=3\overrightarrow{AM}\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\overrightarrow{AM}\)
\(\Rightarrow\overrightarrow{AE}=\dfrac{3}{4}\left(\dfrac{1}{2}\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\right)=\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BE}=\overrightarrow{BA}+\overrightarrow{AE}=-\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}=-\dfrac{5}{8}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
\(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}=-\overrightarrow{AB}+\dfrac{3}{5}\overrightarrow{AC}=\dfrac{8}{5}\overrightarrow{BE}\)
\(\Rightarrow\) B, E, K thẳng hàng
Gọi \(M\left(x;y\right)\Rightarrow\left(x+3\right)^2+\left(y+4\right)^2=1\)
\(\left\{{}\begin{matrix}\overrightarrow{MA}=\left(1-x;2-y\right)\\\overrightarrow{MB}=\left(-2-x;1-y\right)\\\overrightarrow{MC}=\left(3-x;4-y\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=\left(2-3x;7-3y\right)\)
\(T^2=\left(3x-2\right)^2+\left(3y-7\right)^2\)
Đặt \(\left(x+3;y+4\right)=\left(a;b\right)\Rightarrow a^2+b^2=1\)
\(T^2=\left(3a-11\right)^2+\left(3b-19\right)^2\)
\(T^2=9\left(a^2+b^2\right)-66a-114b+482=491-6\left(11a+19b\right)\)
Ta lại có:
\(\left(11a+19b\right)^2\le\left(11^2+19^2\right)\left(a^2+b^2\right)=482\)
\(\Rightarrow11a+19b\ge-\sqrt{482}\)
\(\Rightarrow T^2\le491+6\sqrt{482}\)
\(\Rightarrow T\le\sqrt{491+6\sqrt{482}}\)
Số liệu bài toán cho xấu 1 cách phi lý và vô nghĩa
Trong mp với hệ tọa đô Oxy cho hai điểm A(1;-2), B(-4;5). Tìm tọa độ điểm M trên trục Oy sao cho 3 điểm M,A,B thẳng hàng
Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)
3 điểm M;A;B thẳng hàng khi:
\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)
\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)
Trong mp Oxy, Cho HBH ABCD có B(4;5) và G (0;\(\dfrac{-13}{3}\)) là trọng tâm tam giác ADc. Tìm tọa độ đỉnh D.
\(\overrightarrow{GB}=\left(4;\dfrac{28}{3}\right)\)
Gọi \(D\left(x;y\right)\) \(\Rightarrow\overrightarrow{DG}=\left(-x;-\dfrac{13}{3}-y\right)\)
Gọi O là tâm hbh \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{DG}=\dfrac{2}{3}\overrightarrow{DO}\\\overrightarrow{DO}=\overrightarrow{OB}\end{matrix}\right.\)
\(\Rightarrow\overrightarrow{DG}=\dfrac{1}{3}\overrightarrow{DB}=\dfrac{1}{2}\overrightarrow{GB}\)
\(\Rightarrow\left\{{}\begin{matrix}-x=\dfrac{1}{2}.4\\-\dfrac{13}{3}-y=\dfrac{1}{2}.\dfrac{28}{3}\end{matrix}\right.\) \(\Rightarrow D\left(-2;-9\right)\)
Cho HCN ABCD tâm O. Gọi M,N lần lượt là trung điểm của OA và CD. Bt \(\overrightarrow{MN}=a.\overrightarrow{AB}+b\overrightarrow{AD}\) . Tính a+b
\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{3}{4}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}=\dfrac{3}{4}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\dfrac{1}{2}\overrightarrow{AB}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)
\(\Rightarrow a+b=\dfrac{1}{2}+\dfrac{3}{4}=...\)