Chương 4: SỐ PHỨC

H24
Xem chi tiết
H24
22 tháng 4 2022 lúc 22:20

Gọi \(M\left(x;y\right)\) biểu diễn số phức \(z=x+yi\) \(\left(x,y\in R\right)\).

\(\left|z\right|=\left|\overline{z}-1+2i\right|\) \(\Leftrightarrow\left|x+yi\right|=\left|x-yi-1+2i\right|\) \(\Leftrightarrow\sqrt{x^2+y^2}=\sqrt{\left(x-1\right)^2+\left(2-y\right)^2}\) \(\Leftrightarrow x^2+y^2=x^2-2x+1+4-4y+y^2\) \(\Leftrightarrow2x+4y-5=0\) \(\left(\Delta\right)\)

\(\left|\left(1+2i\right)z+11+2i\right|\) \(=\left|z+2iz+11+2i\right|\)\(=\left|x+yi+2xi-2y+11+2i\right|\)\(=\sqrt{\left(x-2y+11\right)^2+\left(y+2x+2\right)^2}\)\(=\sqrt{\left(x+2y\right)^2+22\left(x-2y\right)+121+\left(y+2x\right)^2+4\left(y+2x\right)+4}\)\(=\sqrt{x^2-4xy+4y^2+22x-44y+121+y^2+4xy+4x^2+4y+8x+4}\)

\(=\sqrt{5x^2+5y^2+30x-40y+125}\)\(=\sqrt{x^2+y^2+6x-8y+25}\) \(=\sqrt{\left(x+3\right)^2+\left(y-4\right)^2}\) \(=MA\) với \(A\left(-3;4\right)\)

\(\rightarrow\left|\left(1+2i\right)z+11+2i\right|min=d\left(A,\left(\Delta\right)\right)\) \(=\dfrac{\left|\left(-3\right).2+4.4-5\right|}{\sqrt{2^2+4^2}}=\dfrac{\sqrt{5}}{2}\)

 

 

Bình luận (0)
H24
Xem chi tiết
NL
14 tháng 4 2022 lúc 23:30

\(z=x+yi\Rightarrow\left(x+1\right)^2+\left(y+1\right)^2=x^2+y^2\)

\(\Rightarrow x+y+1=0\Rightarrow\) tập hợp z là đường thẳng d: \(x+y+1=0\)

\(P=\left|\left(z-4-5i\right)-\left(w-3-4i\right)\right|\ge\left|\left|z-4-5i\right|-\left|w-3-4i\right|\right|=\left|\left|z-4-5i\right|-1\right|\)

Gọi M là điểm biểu diễn z và \(A\left(4;5\right)\Rightarrow\left|z-4-5i\right|=AM\)

\(AM_{min}=d\left(A;d\right)=\dfrac{\left|4+5+1\right|}{\sqrt{1^2+1^2}}=5\sqrt{2}\) 

\(\Rightarrow P\ge\left|5\sqrt{2}-1\right|=5\sqrt{2}-1\)

Bình luận (4)
H24
Xem chi tiết
H24
Xem chi tiết
NL
10 tháng 4 2022 lúc 11:13

Đặt \(z=x+yi\Rightarrow w=\dfrac{1}{\sqrt{x^2+y^2}-x-yi}=\dfrac{\sqrt{x^2+y^2}-x+yi}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\left(\sqrt{x^2+y^2}-x\right)^2+y^2}=\dfrac{1}{8}\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{2x^2+2y^2-2x\sqrt{x^2+y^2}}=\dfrac{1}{8}\)

\(\Rightarrow\dfrac{\sqrt{x^2+y^2}-x}{\sqrt{x^2+y^2}\left(\sqrt{x^2+y^2}-x\right)}=\dfrac{1}{4}\Rightarrow\dfrac{1}{\sqrt{x^2+y^2}}=\dfrac{1}{4}\)

\(\Rightarrow x^2+y^2=16\)

\(\Rightarrow\) Tập hợp \(z_1;z_2\) là đường tròn tâm O bán kính \(R=4\)

Gọi M, N lần lượt là điểm biểu diễn \(z_1;z_2\), do \(\left|z_1-z_2\right|=2\Rightarrow MN=2\)

Gọi \(P\left(0;5\right)\) và Q là trung điểm MN

\(\Rightarrow P=MP^2-NP^2=\overrightarrow{MP}^2-\overrightarrow{NP}^2=\left(\overrightarrow{MP}-\overrightarrow{NP}\right)\left(\overrightarrow{MP}+\overrightarrow{NP}\right)\)

\(=2\overrightarrow{MN}.\overrightarrow{PQ}=2\overrightarrow{MN}\left(\overrightarrow{PO}+\overrightarrow{OQ}\right)=2\overrightarrow{MN}.\overrightarrow{PO}=2MN.PO.cos\alpha\)

Trong đó \(\alpha\) là góc giữa \(MN;PO\)

Do MN, PO có độ dài cố định \(\Rightarrow P_{max}\) khi \(cos\alpha_{max}\Rightarrow\alpha=0^0\Rightarrow MN||PO\)

Mà MN=2 \(\Rightarrow M\left(\sqrt{15};-1\right);N\left(\sqrt{15};1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{PM}=\left(\sqrt{15};-6\right)\\\overrightarrow{PN}=\left(\sqrt{15};-4\right)\end{matrix}\right.\)

\(\Rightarrow P_{max}=PM^2-PN^2=15+36-\left(15+16\right)=20\)

Bình luận (4)
NL
10 tháng 4 2022 lúc 11:13

undefined

Bình luận (0)
H24
Xem chi tiết
NL
9 tháng 4 2022 lúc 22:26

\(\Delta'=m^2-8m+12\)

TH1: \(\Delta'< 0\Rightarrow\) phương trình có 2 nghiệm phức \(z_1;z_2\)

Do \(z_1=m-\sqrt[]{\Delta'};z_2=m+\sqrt{\Delta'}\Rightarrow z_1;z_2\) luôn luôn là 2 số phức liên hợp

\(\Rightarrow\left|z_1\right|=\left|z_2\right|\) luôn đúng khi \(m^2-8m+12< 0\)

\(\Rightarrow2< m< 6\Rightarrow m=\left\{3;4;5\right\}\)

TH2: \(\Delta'=0\Rightarrow m^2-8m+12=0\Rightarrow m=\left\{2;6\right\}\) pt có nghiệm kép (ktm)

TH3: \(\Delta'>0\Rightarrow\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\)

Pt có 2 nghiệm thực phân biệt, để \(\left|z_1\right|=\left|z_2\right|\Rightarrow\left[{}\begin{matrix}z_1=z_2\left(loại\right)\\z_1=-z_2\end{matrix}\right.\)

\(\Rightarrow z_1+z_2=0\Rightarrow2m=0\Rightarrow m=0\)

Vậy \(m=\left\{0;3;4;5\right\}\) có 4 giá trị nguyên của m

Bình luận (2)
H24
Xem chi tiết
NL
8 tháng 4 2022 lúc 14:28

Đặt \(z=x+yi\)

\(\left|x+yi+x-yi+2\right|+2\left|x+yi-x+yi-2i\right|\le12\)

\(\Leftrightarrow\left|2x+2\right|+4\left|\left(y-1\right)i\right|\le12\)

\(\Leftrightarrow\left|x+1\right|+2\left|y-1\right|\le6\)

Tập hợp z là miền trong hình thoi (gồm cả biên) với 4 đỉnh: \(A\left(-7;1\right)\) ; \(B\left(-1;4\right)\) ; \(C\left(5;1\right)\) ; \(D\left(-1;-2\right)\)

\(P^2=\left|z-4-4i\right|^2=\left(x-4\right)^2+\left(y-4\right)^2\)  có tập hợp là đường tròn (C) tâm \(I\left(4;4\right)\) bán kính \(R=P>0\) sao cho (C) và hình thoi ABCD có ít nhất 1 điểm chung

Từ hình vẽ ta thấy \(P_{max}\) khi (C) đi qua A \(\Rightarrow P=IA\) và \(P_{min}\) khi (C) tiếp xúc BC  \(\Rightarrow P=d\left(I;BC\right)\)

\(\overrightarrow{IA}=\left(-11;-3\right)\Rightarrow M=IA=\sqrt{130}\)

\(\overrightarrow{BC}=\left(6;-3\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtpt

Phương trình BC: \(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

\(\Rightarrow m=d\left(I;BC\right)=\dfrac{\left|4+2.4-7\right|}{\sqrt{1^2+2^2}}=\sqrt{5}\)

\(\Rightarrow M+m=\sqrt{130}+\sqrt{5}\)

Bình luận (0)
NL
8 tháng 4 2022 lúc 14:29

undefined

Bình luận (0)
LL
Xem chi tiết
BC
6 tháng 4 2022 lúc 23:51

Bây giờ bạn vẫn còn thức à?

Bình luận (1)
HT
Xem chi tiết
HT
27 tháng 3 2022 lúc 18:16

giúp mik vs 

Bình luận (0)
NA
Xem chi tiết
PD
Xem chi tiết