Bài 5: Phép chiếu song song. Hình biểu diễn của một hình không gian

H24
Xem chi tiết
DL
18 tháng 2 2022 lúc 16:09

undefined

Bình luận (0)
H24
Xem chi tiết
NL
11 tháng 1 2022 lúc 0:52

Kẻ \(HE\perp AD\) , do tam giác ABD đều \(\Rightarrow HE=\dfrac{a\sqrt{3}}{2}\) ; \(AE=\dfrac{1}{4}AD\)

\(\Rightarrow AE=BM\Rightarrow\) tứ giác AEBM là hình bình hành \(\Rightarrow\) H đồng thời là trung điểm ME

Kẻ \(HK\perp SE\Rightarrow HK\perp\left(SAD\right)\)

a. Ta có: \(SH=HE\Rightarrow\) tam giác SHE vuông cân tại H

\(\Rightarrow\) K đồng thời là trung điểm SE

\(\Rightarrow\) KH là đường trung bình tam giác SME \(\Rightarrow SM||HK\)

\(\Rightarrow SM\perp\left(SAD\right)\)

b. Từ C kẻ \(CX\perp\left(SAD\right)\Rightarrow\widehat{CSX}\) là góc giữa SC và (SAD) đồng thời \(CX=d\left(C;\left(SAD\right)\right)\)

\(\Rightarrow sin\alpha=sin\widehat{CSX}=\dfrac{CX}{SC}\)

Từ M kẻ \(MI\perp SE\Rightarrow MI||HK\Rightarrow MI\perp\left(SAD\right)\)

\(\Rightarrow MI=d\left(M;\left(SAD\right)\right)\)

Mà \(CM||AD\Rightarrow CM||\left(SAD\right)\Rightarrow d\left(C;\left(SAD\right)\right)=d\left(M;\left(SAD\right)\right)\)

\(\Rightarrow CX=MI\)

HK là đường trung bình tam giác MIE \(\Rightarrow MI=2HK\)

\(MI=2HK=\dfrac{2SH.HE}{\sqrt{SH^2+HE^2}}=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+\dfrac{3a^2}{4}}}\)

\(SC=\sqrt{SH^2+CH^2}=\sqrt{SH^2+MH^2+CM^2}=\sqrt{SH^2+HE^2+CM^2}\)

\(=\sqrt{SH^2+7a^2}\)

\(\Rightarrow sin\alpha=\dfrac{SH.a\sqrt{3}}{\sqrt{SH^2+7a^2}.\sqrt{SH^2+\dfrac{3a^2}{4}}}=\dfrac{a\sqrt{3}}{\sqrt{SH^2+\dfrac{21a^4}{4SH^2}+\dfrac{31}{4}a^2}}\le\dfrac{a\sqrt{3}}{\sqrt{2\sqrt{\dfrac{21a^4}{4}}+\dfrac{31}{4}a^2}}\)

Dấu "=" xảy ra khi \(SH^2=\dfrac{21a^4}{4SH^2}\Rightarrow SH=a\sqrt[4]{\dfrac{21}{4}}\)

Em kiểm tra lại tính toán

Bình luận (1)
NL
11 tháng 1 2022 lúc 0:53

undefined

Bình luận (0)
TX
31 tháng 12 2021 lúc 9:15

:)??

Bình luận (0)
HB
Xem chi tiết
NL
10 tháng 12 2021 lúc 21:07

a. Qua M kẻ đường thẳng song song SB cắt AB tại E

Qua M kẻ đường thẳng song song SD cắt AD tại H

\(\Rightarrow\Delta MEH\) là thiết diện của mp qua M và song song (SBD)

Qua N kẻ đường thẳng song song SB cắt BC tại F

Qua N kẻ đường thẳng song song SD cắt CD tại G

\(\Rightarrow NFG\) là thiết diện của mp qua N và song song (SBD)

b. Gọi O là giao điểm AC và BD

Do M là trung điểm SA, \(ME||SB\Rightarrow ME\) là đường trung bình tam giác SAB

\(\Rightarrow\) E là trung điểm AB

Hoàn toàn tương tự, ta có F là trung điểm BC, G là trung điểm CD, H là trung điểm AD

\(\Rightarrow EH\) là đường trung bình tam giác ABD, FG là đtb tam giác BCD

\(\Rightarrow I\) là trung điểm AO, J là trung điểm CO

\(\Rightarrow\left\{{}\begin{matrix}OI=\dfrac{1}{2}OA\\OJ=\dfrac{1}{2}OC\end{matrix}\right.\) \(\Rightarrow OI+OJ=\dfrac{1}{2}\left(OA+OC\right)\Rightarrow IJ=\dfrac{1}{2}AC\)

Bình luận (0)
NL
10 tháng 12 2021 lúc 21:08

undefined

Bình luận (0)
PQ
Xem chi tiết
XT
Xem chi tiết
MA
Xem chi tiết
ND
Xem chi tiết
TL
Xem chi tiết