Trong không gian hệ tọa độ Oxyz, cho (d) \(\dfrac{x-1}{-3}=\dfrac{y-3}{2}=\dfrac{z-1}{-2}\) và (P): x-3y+z-4=0.
Viết phương trình hình chiếu của (d) trên (P).
Trong không gian hệ tọa độ Oxyz, cho (d) \(\dfrac{x-1}{-3}=\dfrac{y-3}{2}=\dfrac{z-1}{-2}\) và (P): x-3y+z-4=0.
Viết phương trình hình chiếu của (d) trên (P).
Lời giải:
Gọi \((\alpha)\) là mặt phẳng chứa \((d)\) và vuông góc với \((P)\)
Khi đó vector pháp tuyến của \((\alpha): \overrightarrow{n_{\alpha}}=[\overrightarrow{n_P},\overrightarrow{u_d}]=(-4,1,7)\)
Mặt khác \((\alpha)\) chứa $(d)$ nên chứa luôn điểm \((4,1,3)\) nên PTMP \((\alpha)\) là :
\(-4x+y+7z-6=0\)
Khi đó hình chiếu \((d')\) của $(d)$ trên $(P)$ là giao của $(P)$ và \((\alpha)\)
\(\Rightarrow \overrightarrow{u_{d'}}=[\overrightarrow{n_P},\overrightarrow{n_{\alpha}}]=(22,11,11)=11(2,1,1)\)
Mặt khác \((d')=(P)\cap (\alpha)\) nên \((d') \) đi qua điểm \((0,\frac{1}{2},\frac{11}{2})\)
Do đó PT hình chiếu là:\(\frac{x}{2}=\frac{y-\frac{1}{2}}{1}=\frac{z-\frac{11}{2}}{1}\)
Cho hai điểm A(0;0;3) và B(1;-2;-3). Gọi A'B' là hình chiếu vuông góc của đường thẳng AB lên mặt phẳng (Oxy). Viết phương trình tham số của đường thẳng A'B'.
Giải:
Gọi \((l)\) là mặt phẳng chứa đường thẳng đi qua $AB$ và vuông góc với mặt phẳng $(Oxy)$
\(\overrightarrow{n_l}=[\overrightarrow{AB},\overrightarrow{n_{Oxy}}]=[\overrightarrow{AB},\overrightarrow{Oz}]=(2,1,0)\)
Suy ra PTMP $(l)$ là : \(2x+y=0\)
Ta thấy \(A'B'=(Oxy)\cap (l)\)
\(\Rightarrow \overrightarrow{u_{A'B'}}=[\overrightarrow{n_{Oxy}},\overrightarrow{n_l}]=(1,-2,0)\)
Mặt khác điểm \((1,-2,0)\) thuộc đường thẳng $A'B'$
\(\Rightarrow \) PTĐT: \(\left\{{}\begin{matrix}x=t+1\\y=-2-2t\\z=0\end{matrix}\right.\)
Cho tứ diện ABCD, mp (α) thay đổi đi qua các trung ddiemr I,K của các cạnh DA,DB.Các cạnh CA,CB lần lượt cắt mp(α) tại M,N
a,Gọi O là giao của Mi và Nk .Chứng minh O luôn thuộc 1 đường thẳng cố định
b, Gọi d là giao của mp(α) với mặt phẳng (OAB).Chứng minh khi mặt phẳng (α) thay đôie thì đường thẳng d luôn nằm trên 1 mp cố định và có phương không đổi
cho hình chóp SABCD có đáy là nửa lục giác đều ,AB=2a,BC=CD=DA=a,SA vuông góc mp(ABCD),SA=a ,(P) là mp qua A vuông góc SB cắt SB,SC,SD tại M,N,K.a,CMR: tứ giác AMNK nội tiếp
b,A,B,C,D,M,N,K thộc một mặt cầu
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-2;1;5), mặt phẳng (P) : \(2x-2y+z-1=0\) và đường thẳng (d)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{1}\). Tính khoảng cách từ A đến (P). Viết phương trình mặt phẳng (Q) đi qua A, vuông góc với (P) và song song với d.
Kẻ \(SH\perp AC\left(H\in AC\right)\)
Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)
\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)
\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)
\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)
Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)
Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)
Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)
Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)
\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)
Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)