Bài 3.2: Vị trí tương đối giữa đường thẳng và mặt phẳng

DN

Trong không gian hệ tọa độ Oxyz, cho (d) \(\dfrac{x-1}{-3}=\dfrac{y-3}{2}=\dfrac{z-1}{-2}\) và (P): x-3y+z-4=0.

Viết phương trình hình chiếu của (d) trên (P).

AH
21 tháng 3 2017 lúc 19:39

Lời giải:

Gọi \((\alpha)\) là mặt phẳng chứa \((d)\) và vuông góc với \((P)\)

Khi đó vector pháp tuyến của \((\alpha): \overrightarrow{n_{\alpha}}=[\overrightarrow{n_P},\overrightarrow{u_d}]=(-4,1,7)\)

Mặt khác \((\alpha)\) chứa $(d)$ nên chứa luôn điểm \((4,1,3)\) nên PTMP \((\alpha)\) là :

\(-4x+y+7z-6=0\)

Khi đó hình chiếu \((d')\) của $(d)$ trên $(P)$ là giao của $(P)$ và \((\alpha)\)

\(\Rightarrow \overrightarrow{u_{d'}}=[\overrightarrow{n_P},\overrightarrow{n_{\alpha}}]=(22,11,11)=11(2,1,1)\)

Mặt khác \((d')=(P)\cap (\alpha)\) nên \((d') \) đi qua điểm \((0,\frac{1}{2},\frac{11}{2})\)

Do đó PT hình chiếu là:\(\frac{x}{2}=\frac{y-\frac{1}{2}}{1}=\frac{z-\frac{11}{2}}{1}\)

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
DN
Xem chi tiết
NC
Xem chi tiết
HD
Xem chi tiết
DH
Xem chi tiết