Cho hình chóp S.ABC có bốn đỉnh đếu nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó
Cho hình chóp S.ABC có bốn đỉnh đếu nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo bởi mặt cầu đó
Bán kính mặt cầu ngoại tiếp hình chóp đã cho là R = \(\dfrac{1}{2}\sqrt{a^2+b^2+c^2}\).
Diện tích mặt cầu cần tìm là S = 4\(\pi\)R2 = (a2+b2+c2)\(\pi\).
Thể tích khối cầu cần tìm là V = 4/3.\(\pi\)R3 = \(\dfrac{\pi}{6}\sqrt{a^2+b^2+c^2}^3\).
a)tìm ba số lẻ liên tiếp có tích là 105
b)tìm bốn số chẵn liên tiếp có tổng là 156
a) 3 so le lien tiep co tich la 105: 3;5;7
b) 4 so chan lien tiep co tong la 156 : 36;38;40;42
Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có A(-1;2). Gọi M, N lần lượt là trung điểm của cạnh AD và DC ; K là giao điểm của BN với CM. Viết phương trình đường tròn ngoại tiếp tam giác BMK, biết BN có phương trình \(2x+y-8=0\) và điểm B có hoành độ lớn hơn 2
Gọi \(E=BN\cap AD\Rightarrow D\) là trung điểm của AE.
Dựng \(AH\perp BN\) tại H \(\Rightarrow AH=d\left(A;BN\right)=\frac{8}{\sqrt{5}}\)
Trong tam giác vuông ABE : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AE^2}=\frac{5}{4AB^2}\Rightarrow AB=\frac{\sqrt{5}.AH}{2}=4\)
\(B\in BN\Rightarrow B\left(b;8-2b\right)\left(b>2\right)\)
\(AB=4\Rightarrow B\left(3;2\right)\)
Phương trình AE : \(x+1=0\)
\(E=AE\cap BN\Rightarrow E\left(-1;10\right)\Rightarrow D\left(-1;6\right)\Rightarrow M\left(-1;4\right)\)
Gọi I là tâm của (BKM) => I là trung điểm của BM => I(1;3)
\(R=\frac{BM}{2}=\sqrt{5}\)
Vậy phương trình đường tròn : \(\left(x-1\right)^2+\left(y-3\right)^2=5\)