Lập phương trình đường tròn \(\left(C\right)\) có tâm \(I\in\Delta:\left\{{}\begin{matrix}x=1+t\\y=1-t\end{matrix}\right.\) và tiếp với hai đường thẳng\(:\left\{{}\begin{matrix}d_1:3x+4y-1=0\\d_2:3x-4y+2=0\end{matrix}\right.\)
Lập phương trình đường tròn \(\left(C\right)\) có tâm \(I\in\Delta:\left\{{}\begin{matrix}x=1+t\\y=1-t\end{matrix}\right.\) và tiếp với hai đường thẳng\(:\left\{{}\begin{matrix}d_1:3x+4y-1=0\\d_2:3x-4y+2=0\end{matrix}\right.\)
1. Số phần tử của không giam mẫu: \(6.6=36\)
2. Biến cố A: có 6 phần tử (liệt kê 11, 22,...)
3. B: Ứng với mỗi lần tung thứ nhất, lần tung thứ 2 luôn có 2 biến cố thuận lợi để tổng 2 lần tung chia hết cho 3 (ví dụ lần 1 bằng 1 thì lần 2 bằng 2 hoặc 5). Do đó có tổng cộng \(6.2=12\) biến cố thuận lợi
4. C: Số biến cố thuận lợi là: \(5+4+3+2+1=15\) (ứng với lần tung thứ nhất lần lượt bằng 6, 5, 4, 3, 2)
Làm biếng làm dạng này quá.
Ví dụ câu (4)
(C1) có tâm \(I_1\left(2;0\right)\) bán kính \(R_1=3\)
(C2) có tâm \(I_2\left(3;-4\right)\) bán kính \(R_2=3\)
Nhận xét: (C1) và (C2) có cùng bán kính nên tiếp tuyến chung sẽ song song đường thẳng nối tâm
\(\overrightarrow{I_1I_2}=\left(1;-4\right)\) nên tiếp tuyến chung nhận \(\left(4;1\right)\) là 1 vtpt
Phương trình tiếp tuyến chung d có dạng: \(4x+y+c=0\)
\(d\left(I_1;d\right)=R_1\Rightarrow\)tính được c
Câu (1):
(C1) tâm \(I_1\left(0;0\right)\) bán kính \(R_1=3\)
(C2) tâm \(I_2\left(1;0\right)\) bán kính \(R_2=2\)
Gọi pt tiếp tuyến chung d có dạng \(ax+by+c=0\) với \(a^2+b^2\ne0\)
\(\Rightarrow\left\{{}\begin{matrix}d\left(I_1;d\right)=R_1\\d\left(I_2;d\right)=R_2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|c\right|}{\sqrt{a^2+b^2}}=3\\\dfrac{\left|a+c\right|}{\sqrt{a^2+b^2}}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{\left|c\right|}{3}=\sqrt{a^2+b^2}\left(1\right)\\\dfrac{\left|a+c\right|}{2}=\sqrt{a^2+b^2}\end{matrix}\right.\)
\(\Rightarrow\dfrac{\left|c\right|}{3}=\dfrac{\left|a+c\right|}{2}\Rightarrow\left[{}\begin{matrix}\dfrac{a+c}{2}=\dfrac{c}{3}\\\dfrac{a+c}{2}=-\dfrac{c}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}c=-3a\\c=-\dfrac{3a}{5}\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow\left[{}\begin{matrix}\left|a\right|=\sqrt{a^2+b^2}\\\left|\dfrac{a}{5}\right|=\sqrt{a^2+b^2}\end{matrix}\right.\) \(\Rightarrow b=0\) (pt dưới vô nghiệm)
Thay vào pt (d) ta được: \(ax-3a=0\Leftrightarrow x-3=0\)
Viết câu 2, câu 2 em tự làm nhé:
Giả sử tiếp tuyến d' có 1 vtpt tọa độ \(\left(a;b\right)\) với a;b không đồng thời bằng 0
(C) tâm \(I\left(1;-1\right)\) bán kính \(R=\sqrt{10}\) ; d có 1 vtpt tọa độ \(\overrightarrow{n_d}=\left(2;1\right)\)
Do d' và d tạo với nhau góc 45 độ nên:
\(\left|cos\left(\overrightarrow{n};\overrightarrow{n_d}\right)\right|=\dfrac{\sqrt{2}}{2}=\dfrac{\left|2a+b\right|}{\sqrt{5}.\sqrt{a^2+b^2}}\Rightarrow5\left(a^2+b^2\right)=2\left(2a+b\right)^2\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\Leftrightarrow\left(a+3b\right)\left(3a-b\right)=0\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(3;-1\right)\\\left(a;b\right)=\left(1;3\right)\end{matrix}\right.\)
TH1: d' có dạng \(3x-y+c=0\)
Do d' tiếp xúc (C) nên: \(d\left(I;d'\right)=R\Rightarrow\dfrac{\left|3+1+c\right|}{\sqrt{3^2+\left(-1\right)^2}}=\sqrt{10}\Rightarrow\left|c+4\right|=10\)
\(\Rightarrow\left[{}\begin{matrix}c=6\\c=-14\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3x-y+6=0\\3x-y-14=0\end{matrix}\right.\)
TH2: d' có dạng \(x+3y+c=0\) làm tương tự
Lập phương trình đường thẳng delta là tiếp tuyến của đường tròn (c): (x-1)^2+(y+2)^2=25 a) delta tiếp xúc (c) tại điểm có hoành độ bằng -2 b) delta song song với đường thẳng 12x+5y+6=0
a: Khi x=-2 thì (y+2)^2=25-(-2-1)^2=25-9=16
=>y=2 hoặc y=-6
TH1: A(-2;2)
I(1;-2)
vecto IA=(-3;4)
Phương trình Δ là:
-3(x-1)+4(y+2)=0
=>-3x+3+4y+8=0
=>-3x+4y+11=0
TH2: A(-2;-6); I(1;-2)
vecto IA=(-3;-4)=(3;4)
Phương trình IA là:
3(x+2)+4(y+6)=0
=>3x+6+4y+24=0
=>3x+4y+30=0
b: Δ//12x+5y+6=0
=>Δ: 12x+5y+c=0
d(I;Δ)=5
=>\(\dfrac{\left|12\cdot1+5\cdot\left(-2\right)+c\right|}{\sqrt{12^2+5^2}}=5\)
=>|c+2|=5*13=65
=>c=63 hoặc c=-67
cho đường tròn (c) pt: \(\left(x+1\right)^2+y^2=9.\) viết PT đường thẳng đi qua A(2;3) cắt đường tròn (c) tại 2 điểm M,N so cho MN=6
Đường tròn (C) tâm \(I\left(-1;0\right)\) bán kính \(R=3\)
\(MN=6=2R\Rightarrow MN\) là đường kính
\(\Rightarrow\) Đường thẳng d đi qua tâm I của đường tròn
\(\Rightarrow\) Đường thẳng d là đường thẳng IA
\(\overrightarrow{IA}=\left(3;3\right)=3\left(1;1\right)\Rightarrow\) đường thẳng d nhận (1;-1) là 1 vtpt
Phương trình d:
\(1\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow x-y+1=0\)
cho (c): \(x^2+y^2-4x+2y-15=0\)
có i là tâm ,đường thẳng \(\Delta\) đi qua M (1;-3) cắt đường tròn (c) tại 2 điểm A,B sao cho \(\Delta IAB\) cps diện tích bằng 8. viết PT đường thẳng \(\Delta\)
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=2\sqrt{5}\)
Gọi H là trung điểm AB \(\Rightarrow IH\perp AB\Rightarrow IH=d\left(I;\Delta\right)\)
\(S_{IAB}=\dfrac{1}{2}IH.AB=\dfrac{1}{2}IH.2AH=IH.\sqrt{IA^2-IH^2}=IH.\sqrt{20-IH^2}\)
\(\Rightarrow IH\sqrt{20-IH^2}=8\)
\(\Rightarrow IH^4-20IH^2+64=0\Rightarrow\left[{}\begin{matrix}IH=4\\IH=2\end{matrix}\right.\)
\(\overrightarrow{IM}=\left(-1;-2\right)\Rightarrow IM=\sqrt{5}\), mà \(IH\le IM\Rightarrow IH=2\)
Gọi \(\left(a;b\right)\) là 1 vtpt của \(\Delta\) với a;b không đồng thời bằng 0
\(\Rightarrow\) Phương trình \(\Delta\): \(a\left(x-1\right)+b\left(y+3\right)=0\Leftrightarrow ax+by-a+3b=0\)
\(d\left(I;\Delta\right)=IH\Leftrightarrow\dfrac{\left|2a-b-a+3b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|a+2b\right|=2\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2+4ab+4b^2=4a^2+4b^2\)
\(\Rightarrow3a^2-4ab=0\Rightarrow\left[{}\begin{matrix}a=0\\3a=4b\end{matrix}\right.\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(0;1\right)\\\left(a;b\right)=\left(4;3\right)\end{matrix}\right.\) \(\Rightarrow\) có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}y+3=0\\4x+3y+5=0\end{matrix}\right.\)
cho (c): \(x^2+y^2-2x+4y+2=0\)
viết (c') có tâm I(5;1) và (c') cắt (c) tại A,B sao cho AB=\(\sqrt{3}\)
(C) tâm \(O\left(1;-2\right)\) bán kính \(R=\sqrt{3}\)
\(\overrightarrow{OI}=\left(4;-3\right)\Rightarrow OI=5\)
Gọi giao điểm của OI và AB là H \(\Rightarrow H\) là trung điểm AB và \(OI\perp AB\) tại H
Áp dụng Pitago cho tam giác vuông OAH:
\(OH=\sqrt{OA^2-AH^2}=\sqrt{R^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{3}{2}\)
\(\Rightarrow IH=OI-OH=\dfrac{7}{2}\)
\(\Rightarrow R'=IA=\sqrt{AH^2+IH^2}=\sqrt{\left(\dfrac{AB}{2}\right)^2+IH^2}=\sqrt{13}\)
Phương trình (C'): \(\left(x-5\right)^2+\left(y-1\right)^2=13\)
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
Trong hệ tọa độ Oxy, cho 3 điểm A(-1;3) B(3;5) C(4;1) . Viết phương trình đường thẳng d đi qua B và tạo với đường thẳng AC một góc
\(\overrightarrow{AC}=\left(5;-2\right)\)
Gọi \(\overrightarrow{u}=\left(a;b\right)\) là 1 vtcp của d (với a;b không đồng thời bằng 0)
Do d tạo với AC một góc 45 độ
\(\Rightarrow\dfrac{\left|5a-2b\right|}{\sqrt{5^2+2^2}.\sqrt{a^2+b^2}}=cos45^0=\dfrac{1}{\sqrt{2}}\)
\(\Rightarrow2\left(5a-2b\right)^2=29\left(a^2+b^2\right)\)
\(\Rightarrow21a^2-40ab-21b^2=0\)
\(\Rightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)
Chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(7;3\right)\\\left(a;b\right)=\left(3;-7\right)\end{matrix}\right.\)
\(\Rightarrow d\) nhận (3;-7) hoặc (7;3) là vtpt
\(\Rightarrow\) Phương trình d