Giải các hệ phương trình sau và minh họa hình học kết quả tìm được:
a) \(\left\{{}\begin{matrix}2x+5y=2\\\dfrac{2}{5}x+y=1\end{matrix}\right.;\)
b) \(\left\{{}\begin{matrix}0,2x+0,1y=0,3\\3x+y=5\end{matrix}\right.;\)
c) \(\left\{{}\begin{matrix}\dfrac{3}{2}x-y=\dfrac{1}{2}\\3x-2y=1\end{matrix}\right..\)
a) Giải hệ phương trình:
{2x+5y=2(1)25x+y=1(2)⇔{2x+5y=2(1′)−2x−5y=−5(2′){2x+5y=2(1)25x+y=1(2)⇔{2x+5y=2(1′)−2x−5y=−5(2′)
Cộng (1’) với (2’) vế theo vế, ta được: 0x + 0y = -3
Phương trình này vô nghiệm. Vậy hệ đã cho vô nghiệm.
Minh họa hình học kết quả tìm được:
- Vẽ đồ thị hàm số 2x + 5y = 2.
Cho y = 0 ⇒ x = 1. Ta xác định được điểm A(1; 0)
Cho y = 1 ⇒ x = -1,5. Ta xác định được điểm B(-1,5; 1).
Đồ thị hàm số là đường thẳng đi qua hai điểm A và B
-Vẽ đồ thị hàm số 25x+y=1⇔2x+5y=525x+y=1⇔2x+5y=5
Cho x = 0 ⇒ y = 1. Ta xác định được điểm C(0; 1)
Cho y = 2 ⇒ x = -2,5. Ta xác định được điểm D(-2,5; 2)
Đồ thị hàm số là đường thẳng đi qua hai điểm C và D.
Kết luận: Đồ thị hai hàm số trên song song. Điều này chứng tỏ rằng hệ phương trình vô nghiệm.
b) Giải hệ phương trình:
{0,2x+0,1y=0,3(1)3x+y=5(2)⇔{−2x−y=−3(1′)3x+y=5(2′){0,2x+0,1y=0,3(1)3x+y=5(2)⇔{−2x−y=−3(1′)3x+y=5(2′)
Cộng (1’) với (2’) vế theo vế, ta được x = 2
Thế x = 2 vào (2), ta được: 6 + y = 5 ⇔ y = -1
Vậy nghiệm của hệ phương trình là (x = 2; y = -1)
Minh họa hình học:
- Đồ thị hàm số 0,2x + 0,1y = 0,3 là một đường thẳng đi qua hai điểm:
A(x = 0; y = 3) và B(x = 1,5; y = 0)
- Đồ thị hàm số 3x + y = 5 là một đường thẳng đi qua hai điểm C(x = 0; y = 5) và D(x = 1; y = 2)
- Đồ thị hai hàm số trên cắt nhau tại điểm: M(x = 2; y = -1).
Vậy (2; -1) là một nghiệm của hệ phương trình.
c) Giải hệ phương trình:
{32x−y=12(1)3x−2y=1(2)⇔{−3x+2y=−1(1′)3x−2y=1(2′){32x−y=12(1)3x−2y=1(2)⇔{−3x+2y=−1(1′)3x−2y=1(2′)
Cộng (1’) và (2’) vế theo vế, ta có: 0x + 0y = 0.
Phương trình này có vô số nghiệm.
Nghiệm tổng quát là (x;32x−12)(x;32x−12) với x ∈ R
Minh họa hình học
- Đồ thị hàm số (1) là đường thẳng đi qua hai điểm A(0; −12−12) và B(1;1) nên hai đường thẳng này trùng nhau. Vậy hệ phương trinh có vô số nghiệm.
Trả lời bởi Đặng Phương Nam