Tìm tập xác định của các hàm số
a) \(y=\dfrac{2-\cos x}{1+\tan\left(x-\dfrac{\pi}{3}\right)}\)
b) \(y=\dfrac{\tan x+\cot x}{1-\sin2x}\)
Tìm tập xác định của các hàm số
a) \(y=\dfrac{2-\cos x}{1+\tan\left(x-\dfrac{\pi}{3}\right)}\)
b) \(y=\dfrac{\tan x+\cot x}{1-\sin2x}\)
Chia các đoạn sau thành hai đoạn, trên một đoạn hàm số \(y=\sin x\) tăng, còn trên đoạn kia hàm số đó giảm :
a) \(\left[\dfrac{\pi}{2};2\pi\right]\)
b) \(\left[-\pi;0\right]\)
c) \(\left[-2\pi;-\pi\right]\)
a) Hàm số \(y=\sin x\) giảm trên đoạn \(\left[\dfrac{\pi}{2};\dfrac{3\pi}{2}\right]\) và tăng trên đoạn \(\left[\dfrac{3\pi}{2};2\pi\right]\)
b) \(y=\sin x\) giảm trên \(\left[-\pi;-\dfrac{\pi}{2}\right]\), tăng trên \(\left[-\dfrac{\pi}{2};0\right]\)
c) \(y=\sin x\) tăng trên \(\left[-2\pi;-\dfrac{3\pi}{2}\right]\), giảm trên \(\left[-\dfrac{3\pi}{2};-\pi\right]\)
Trả lời bởi Nguyen Thuy HoaGiải phương trình sau :
\(\sin^2x+\sin^22x=\sin^23x\)
Giải các phương trình sau :
a) \(\sin\left(x+1\right)=\dfrac{2}{3}\)
b) \(\sin^22x=\dfrac{1}{2}\)
c) \(\cot^2\dfrac{x}{2}=\dfrac{1}{3}\)
d) \(\tan\left(\dfrac{\pi}{12}+12x\right)=-\sqrt{3}\)
a) Ta có:
sin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Zsin(x+1)=23⇔[x+1=arcsin23+k2πx+1=π−arcsin23+k2π⇔[x=−1+arcsin23+k2πx=−1+π−arcsin23+k2π;k∈Z
b) Ta có:
sin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Zsin22x=12⇔1−cos4x2=12⇔cos4x=0⇔4x=π2+kπ⇔x=π8+kπ4,k∈Z
c) Ta có:
cot2x2=13⇔⎡⎢⎣cotx2=√33(1)cotx2=−√33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Zcot2x2=13⇔[cotx2=33(1)cotx2=−33(2)(1)⇔cotx2=cotπ3⇔x2=π3+kπ⇔x=2π3+k2π,k∈z(2)⇔cotx2=cot(−π3)⇔x2=−π3+kπ⇔x=−2π3+k2π;k∈Z
d) Ta có:
tan(π12+12x)=−√3⇔tan(π12+12π)=tan(−π3)⇔π12+12=−π3+kπ⇔x=−5π144+kπ12,k∈Z
Vậy nghiệm của phương trình đã cho là: x=−5π144+kπ12,k∈Z
Giải phương trình sau :
\(3\sin x-4\cos x=1\)
\(3\sin x-4\cos x=1\Leftrightarrow\dfrac{3}{5}\sin x-\dfrac{4}{5}\cos x=\dfrac{1}{5}\)
\(\Leftrightarrow\sin\left(x-\alpha\right)=\dfrac{1}{5}\) (với \(\cos\alpha=\dfrac{3}{5};\sin\alpha=\dfrac{4}{5}\) )
\(\Leftrightarrow\left[{}\begin{matrix}x=\alpha+arc\sin\dfrac{1}{5}+k2\pi,k\in\mathbb{Z}\\x=\alpha+\pi-arc\sin\dfrac{1}{5}+k2\pi,k\in\mathbb{Z}\end{matrix}\right.\)
Trả lời bởi Nguyen Thuy HoaGiải phương trình sau :
\(\cos3x-\cos5x=\sin x\)
\(\cos3x-\cos5x=\sin x\Leftrightarrow\sin x\left(1-2\sin4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sin x=0\\\sin4x=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi,k\in\mathbb{Z}\\x=\dfrac{\pi}{24}+k\dfrac{\pi}{2},k\in\mathbb{Z}\\x=\dfrac{5\pi}{24}+k\dfrac{\pi}{2},k\in\mathbb{Z}\end{matrix}\right.\)
Trả lời bởi Nguyen Thuy HoaGiải phương trình sau :
\(\cot x-1=\dfrac{\cos2x}{1+\tan x}+\sin^2x-\dfrac{1}{2}\sin2x\)
Giải phương trình sau :
\(4\sin3x+\sin5x-2\sin x\cos2x=0\)
\(4\sin3x+\sin5x-2\sin x\cos2x=0\)
\(\Leftrightarrow\)\(4\sin3x+\sin5x-\sin3x+\sin x=0\)
\(\Leftrightarrow3\sin3x+\sin5x+\sin x=0\)
\(\Leftrightarrow3\sin3x+2\sin3x\cos2x=0\)
\(\Leftrightarrow\sin3x\left(3+2\cos2x\right)=0\)
Đáp số : \(x=k\dfrac{\pi}{3},k\in\mathbb{Z}\)
Trả lời bởi Nguyen Thuy Hoa
Giải phương trình sau :
\(2\tan x+3\cot x=4\)
\(2\tan x+3\cot x=4\)
Điều kiện \(\cos x\ne0\) và \(\sin x\ne0\)
Ta có : \(2\tan^2x-4\tan x+3=0\)
Phương trình vô nghiệm đối với \(\tan x\), do đó phương trình vô nghiệm.
Trả lời bởi Nguyen Thuy HoaXác định tính chẵn lẻ của các hàm số :
a) \(y=\sin^3x-\tan x\)
b) \(y=\dfrac{\cos x+\cot^2x}{\sin x}\)