\(y'=4cos\left(4x-\dfrac{\pi}{3}\right)cos5x-5sin5x.sin\left(4x-\dfrac{\pi}{3}\right)\)
\(y'=4cos\left(4x-\dfrac{\pi}{3}\right)cos5x-5sin5x.sin\left(4x-\dfrac{\pi}{3}\right)\)
Chứng minh rằng \(f'\left(x\right)=0;\forall x\in R\) nếu :
a) \(f\left(x\right)=3\left(\sin^4x+\cos^4x\right)-2\left(\sin^6x+\cos^6x\right)\)
b) \(f\left(x\right)=\cos^6x+2\sin^4x.\cos^2x+3\sin^2x\cos^4x+\sin^4x\)
c) \(f\left(x\right)=\cos\left(x-\dfrac{\pi}{3}\right)\cos\left(x+\dfrac{\pi}{4}\right)+\cos\left(x+\dfrac{\pi}{6}\right)\cos\left(x+\dfrac{3\pi}{4}\right)\)
d) \(f\left(x\right)=\cos^2x+\cos^2\left(\dfrac{2\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3}-x\right)\)
Đạo hàm
y= sin(2x+π/6) + cos3x - tan1/4x - cot√5x+1
Chứng minh rằng các hàm số sau có đạo hàm không phụ thuộc vào x :
a) \(y=\sin^6x+\cos^6x+3\sin^2x.\cos^2x\)
b) \(y=\cos^2\left(\dfrac{\pi}{3}-x\right)+\cos^2\left(\dfrac{\pi}{3}+x\right)+\cos^2\left(\dfrac{2\pi}{3x}-x\right)+\cos^2\left(\dfrac{2\pi}{3x}+x\right)-2\sin^2x\)
Bài tập 3: Cho hàm số
f( x )=c o s x. Chứng minh rằng:
2f'(x+pi/3).f'(x-pi/6)=f'(0)-f(2x+pi/6)
Bài tập 4: Cho hàm số y=3(sin^4 x +cos^4 )-2(sin^6 x +cos^6 x). Chứng minh rằng: y'=0 \-/ x€ Z
Bài tập 5: Cho hàm số
Y= (sin x/ 1+cos x)^3. CMR: y'.sinx-3y=0
Tính đạo hàm của y= sin(π/3 - x/2)
Đạo hàm của y=sin(π/2-2x)là
A.-cos(π/2-2x)
B.-2sin2x
C.cos(π/2-2x)
D.2sin2x
Tính đạo hàm y=sin(π/2+2x) là
Cho hàm số f(x)=\(sin^2\left(\dfrac{\pi}{6}-x\right)+sin^2\left(\dfrac{\pi}{6}+x\right)\) . Chứng minh rằng f '(x)=sin2x
Tính \(\dfrac{f'\left(1\right)}{\varphi'\left(1\right)}\), biết rằng \(f\left(x\right)=x^2\) và \(\varphi\left(x\right)=4x+\sin\dfrac{\pi x}{2}\) ?