H24

xét tính liên tục của hàm số

\(f\left(x\right)=\left\{{}\begin{matrix}5x-2\\2+2x\end{matrix}\right.\) \(x>1\),\(x\le1\) tại x = 1

 

AH
18 tháng 11 2023 lúc 21:34

Lời giải:
\(\lim\limits_{x\to 1+}f(x)=\lim\limits_{x\to 1+}(5x-2)=3\)

\(\lim \limits_{x\to 1-}f(x)=\lim \limits_{x\to 1-}(2+2x)=4\)

\(\Rightarrow \lim\limits_{x\to 1+}f(x)\neq \lim \limits_{x\to 1-}f(x)\)

Do đó hàm số không liên tục tại $x=1$

Bình luận (0)
NT
18 tháng 11 2023 lúc 21:35

\(\lim\limits_{x\rightarrow1^-}f\left(x\right)=\lim\limits_{x\rightarrow1^-}2x+2=2\cdot1+2=4\)

\(\lim\limits_{x\rightarrow1^+}f\left(x\right)=\lim\limits_{x\rightarrow1^+}5x-2=5-2=3\)

\(f\left(1\right)=2+2\cdot2=4\)

Vì \(\lim\limits_{x\rightarrow1^-}f\left(x\right)< >\lim\limits_{x\rightarrow1^+}f\left(x\right)\)

nên hàm số bị gián đoạn tại x=1

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết