HT

Xét a.b>0 thỏa mãn a+b=1.Tìm GTNN của P=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)

 

AH
10 tháng 8 2021 lúc 16:09

Lời giải:

$P=a^3b^3+1+1+\frac{1}{a^3b^3}$

$=(ab)^3+\frac{1}{(ab)^3}+2$

Áp dụng BĐT Cô-si:

$(ab)^3+\frac{1}{4096(ab)^3}\geq 2\sqrt{(ab)^3.\frac{1}{4096(ab)^3}}=\frac{1}{32}(1)$

$ab\leq \frac{(a+b)^2}{4}=\frac{1}{4}$

$\Rightarrow (ab)^3\leq \frac{1}{64}$

$\Rightarrow \frac{4095}{4096(ab)^3}\geq \frac{4095}{64}(2)$

Từ $(1);(2)$ suy ra:
$P\geq \frac{1}{32}+\frac{4095}{64}+2=\frac{4225}{64}$
Vậy $P_{\min}=\frac{4225}{64}$

Giá trị này đạt tại $a=b=\frac{1}{2}$

 

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
DH
Xem chi tiết
HT
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
Xem chi tiết
ND
Xem chi tiết
H24
Xem chi tiết