DH

Cho a,b>0 thỏa mãn a+b=1.Tìm GTNN của A=\(\left(a^3+\dfrac{1}{b^3}\right)\left(b^3+\dfrac{1}{a^3}\right)\)

MN giúp e với e cần gấp ạ

 

NL
10 tháng 8 2021 lúc 22:15

\(A=a^3b^3+\dfrac{1}{a^3b^3}+2=a^3b^3+\dfrac{1}{2^{12}.a^3b^3}+\dfrac{2^{12}-1}{2^{12}a^3b^3}+2\)

\(A\ge2\sqrt{\dfrac{a^3b^3}{2^{12}.a^3b^3}}+\dfrac{2^{12}-1}{2^{12}.\left(\dfrac{a+b}{2}\right)^6}+2=\dfrac{2}{2^6}+\dfrac{2^{12}-1}{2^6}+2=\dfrac{2^{12}+1}{2^6}+2\) (casio)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
HT
Xem chi tiết
PK
Xem chi tiết
H24
Xem chi tiết
Xem chi tiết
DH
Xem chi tiết
HM
Xem chi tiết