§5. Dấu của tam thức bậc hai

MQ

xác định m để pt: (x-1)\([x^2+2\left(m+3\right)x+4m+12]=0\) có 3 nghiệm pb lớn hơn -1

NL
12 tháng 4 2020 lúc 22:29

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2\left(m+3\right)x+4m+12=0\left(1\right)\end{matrix}\right.\)

Để pt có 3 nghiệm pb lớn hơn -1 \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác 1 và lớn hơn -1

\(a+b+c\ne0\Rightarrow1+2m+6+4m+12\ne0\Rightarrow m\ne-\frac{19}{6}\)

Để pt có 2 nghiệm pb

\(\Rightarrow\Delta'=\left(m+3\right)^2-4m-12>0\)

\(\Leftrightarrow m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

Để pt có 2 nghiệm lớn hơn -1 \(\Leftrightarrow-1< x_1< x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\frac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m+7>0\\m+3< 1\end{matrix}\right.\) \(\Rightarrow-\frac{7}{2}< m< -2\)

Kết hợp lại ta được:

\(\left\{{}\begin{matrix}-\frac{7}{2}< m< -3\\m\ne-\frac{19}{6}\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
MC
Xem chi tiết
LC
Xem chi tiết
SK
Xem chi tiết
LC
Xem chi tiết
QP
Xem chi tiết
NV
Xem chi tiết
SK
Xem chi tiết
TT
Xem chi tiết
PA
Xem chi tiết