1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
26. Cho đg thẳng denta 7x +10y -15=0 . Trong các điểm M (1;-3) , N(0;4) , P(8;0) , Q(1;5) điểm nào cách xa đg thẳng denta nhất?
A. M
B. N
C. P
D. Q
25. Khoảnh cách giữa 2 đg thẳng denta 1: 7x +y -3=0 và denta 2: 7x +y +12=0
A. 15
B. 9
C. 9/√50
D. 3√2/2
23. Cho 3 điểm A(0;1) , B(12;5) , C(-3;5) . Đg thẳng nào sau đây cách đều 3 điểm A,B,C
A. -x +y +10=0
B. x -3y +4=0
C. 5x -y +1=0
D. x +y =0
22. Cho 2 điểm A(2;3) , B(1;4) . Đg thẳng nào sau đây cách đều 2 điểm A,B?
A. x -y+100=0
B. x -2y=0
C. x +y -1=0
D. x +2y=0
xác định phương trình parabol (P) : y = x^2 + bx + c biết rằng c = 2, (P) đi qua (3;-4) và có trục đối xứng x = -3/2
giải hệ phương trình:
\(\left\{{}\begin{matrix}\left(x-y\right)\left(x^2-y^2\right)=3\\\left(x+y\right)\left(x^2+y^2\right)=15\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-3xy^2=2x+y\\x^2+2xy-y^2=1\end{matrix}\right.\)
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
Bài 15 : Giải hệ phương trình sau :\(\left\{{}\begin{matrix}x+y=4\\\left(x^2+y^2\right)\left(x^3+y^3\right)=280\end{matrix}\right.\)
cho đẳng thức x^2-x+y^2-y=xy
chứng minh (\(\left(y-1\right)^2< \dfrac{4}{3}\)
Cho x, y thỏa mãn \(\sqrt{x+y-\dfrac{2}{3}}\)=\(\sqrt{x}+\sqrt{y}-\sqrt{\dfrac{2}{3}}\) , tính tích xy (\(\ne0\)).