Δ=(-2)^2-4*1*[-(m-1)(m-3)]
=4+4(m-1)(m-3)
=4+4(m^2-4m+3)
=4m^2-16m+12+4
=4m^2-16m+16
=(2m-4)^2>=0
=>Phương trình luôn có nghiệm
Δ=(-2)^2-4*1*[-(m-1)(m-3)]
=4+4(m-1)(m-3)
=4+4(m^2-4m+3)
=4m^2-16m+12+4
=4m^2-16m+16
=(2m-4)^2>=0
=>Phương trình luôn có nghiệm
Cho phương trình x^2 - 2 (m-1) x+m-3=0
1, Giải phương trình với m=-2
2, Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt
3, Tìm m để phương trình có 2 nghiệm trái dấu
4, Tìm m để phương trình có 2 nghiệm dương phân biệt
5, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x12+x22=10
6, Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn x1+2x2=0
Cho phương trình x2-mx+m-1=0.
giải phương trình với m=3
chứng minh phương trình có nghiệm với mọi m
Cho phương trình x2-2mx+m=7. chứng minh phương trình có 2 nghiệm phân biệt với mọi m
( 2 điểm )
1) Cho phương trình x2- 2x + m = 0 ( với m là số thực thoả mãn m < 1 ). Chứng minh phương trình đã cho có hai nghiệm phân biệt.
2) Cho x1 và x2 là hai nghiệm của phương trình x2+ 2x- 1 = 0.
Tính giá trị của biểu thức P = \(\dfrac{1}{x_1}\)+ \(\dfrac{1}{x_2}\)
cho 2 phương trình bậc hai x2 - 2x + m = 0 (1)
(1) Tìm m để phương trình (1) có nghiệm
(2) Chứng minh rằng với mọi m, phương trình (1) không thể có hai nghiệm cùng là số âm
(3) Tìm m để phương trình (1) có hai nghiệm thỏa mãn x1 - 2x2 =5
Bài 10: Cho phương trình (m+4)2-2(m-3)x-2=0 (1)
a) Chứng minh rằng phương trình (1) luôn có nghiệm với mọi m
b) Tìm m để phương trình có một nghiệm là 1. Khi đó tìm nghiệm thứ hai của phương trình
Cho phương trình (2m-1)x^2 + (m-3)x - 6m-2=0.
a) Chứng minh phương trình đã cho luô có nghiệm x= -2.
b) Tìm các nghiệm của phương tình đã cho theo tham số m.
Cho phương trình x - 2(m - 3)x + 8 - 4m = 0 . Chứng minh phương trình có nghiệm với mọi m.
Cho phương trình: x2 –(m+1)x+2m-3 =0 (1)
+ Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m.
+ Tìm giá trị của m để phương trình (1) có nghiệm bằng 3.
Không giải phương trình. Chứng minh phương trình có 2 nghiệm phân biệt
\(-x^2+\left(2m^2-m+1\right)x+m^2+m+1=0\)