a*c=-(m^2+m+1)
=-(m^2+m+1/4+3/4)
=-(m+1/2)^2-3/4<0
=>Phương trình luôn có 2 nghiệm pb
a*c=-(m^2+m+1)
=-(m^2+m+1/4+3/4)
=-(m+1/2)^2-3/4<0
=>Phương trình luôn có 2 nghiệm pb
Không giải phương trình, hãy chứng minh phương trình sau có 2 nghiệm phân biệt với mọi m\(-x^2-\left(2m^2+m+1\right)x+m^2+m+1=0\)
BÀI1. Cho phương trình : \(mx^2-\left(2m+3\right)x+m-4=0\)
a) Tìm m để phương trình có hai nghiệm phân biệt x1, x2.
b) Tìm hệ thức liên hệ giữa hai nghiệm x1, x2 không phụ thuộc m.
BÀI2. Cho phương trình : \(\left(m-1\right)x^2-2mx+m+1=0\)
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt x1,x2
b) Xác định m để phương trình có 2 nghiệm bằng 5. Từ đó tính tổng 2 nghiệm của phương trình.
c) Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc x.
Cho phương trình: \(x^2-\left(m+1\right)x+2m-3=0\)
a) Chứng minh rằng phương trình trên luôn có 2 nghiệm phân biệt với mọi giá trị của m
b)Tìm giá trị của m để phương trình (1) có nghiệm bằng 3
Cho phương trình x2-(2m-1)x+m (m-1)=0
A) giải phương trình khi m=2
B)Chứng minh: phương trình luôn có 2 nghiệm phân biệt với mọi m
cho phương trình \(x^2-2\left(m-1\right)x+m-3+=0\left(1\right)\)
1.chứng minh phương trình luôn có 2 nghiệm phân biệt
2.tìm một hệ thức liên hệ giữa hai nghiệm của phương trình (1) mà không phụ thuộc vào m
3.tìm giá trị nhỏ nhất của P=x^2+x^2 ( với x1,x2 là nghiệm của phương trình (1)
Cho phương trình : x^2 - 2(m+1)x + 2m = 0
a) Chứng minh phương trình luôn có 2 nghiệm phân biệt với mọi m
b) Tìm các giá trị của m để phương trình có 2 nghiệm phân biệt cùng dương
c) Tìm hệ thức liên hệ giữa 2 nghiệm không phụ thuộc m
cho phương trình x^2-2(m+1)x+2m-15=0 chứng minh phương trình luôn có 2 nghiệm phân biệt
Tìm điều kiện của tham số m để phương trình bậc 2 ẩn x sau có 2 nghiệm phân biệt: \(\left(m+1\right)x^2-\left(2m-1\right)x+m=0\)
Cho phương trình: \(x^2-\left(2m+1\right)x+m^2+m-1=0\). Chứng minh rằng: Có một hệ thức giữa \(2\) nghiệm không phụ thuộc vào \(m\)