\(\left(x-7\right)\left(x+7\right)+8x^2=\left(3x-2\right)^2-4x\)
\(\Leftrightarrow\left(x^2-49\right)+8x^2=\left(9x^2-12x+4\right)-4x\)
\(\Leftrightarrow9x^2-49=9x^2-16x+4\)
\(\Leftrightarrow-16x=-53\)
\(\Leftrightarrow x=\dfrac{53}{16}\)
\(\left(x-7\right)\left(x+7\right)+8x^2=\left(3x-2\right)^2-4x\)
\(\Leftrightarrow\left(x^2-49\right)+8x^2=\left(9x^2-12x+4\right)-4x\)
\(\Leftrightarrow9x^2-49=9x^2-16x+4\)
\(\Leftrightarrow-16x=-53\)
\(\Leftrightarrow x=\dfrac{53}{16}\)
giai pt (giup toi voi)
1.\(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)
2.\(\dfrac{2x}{x^2+3x-10}\)+\(\dfrac{5x}{x^2+7x-10}=4\)
\(\dfrac{x-1}{2x^2-4x}-\dfrac{7}{8x}=\dfrac{5-x}{4x^2-8x}-\dfrac{1}{8x-16}\)
\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
1. a. 4x-20=0
b. 2x+x+12=0
c. x-5=3-x
d. 7-3x=9-x
2.
a. 7+2x=22-3x
b. 8x-3=5x+12
c. x-12+4x=25+2x-1
d. x+2x+3x-19=3x+5
e. 7-(2x+4)=-(x+4)
f. (x-1)-(2x-1)=9-x
5-2/4x^2-2x-1/8x-16=x-1/2x(x-2)-7/8x
\(\dfrac{5-x}{4x^2-8x}+\dfrac{7}{8x}=\dfrac{x-1}{2x(x-2)}+\dfrac{1}{8x-16}\)
Giúp mk nha
Giải các phương trình
1/ \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
2/ \(\dfrac{1}{x^2-6x+8}+\dfrac{1}{x^2-10x+24}+\dfrac{1}{x^2-14x+48}=\dfrac{1}{9}\)
3/ \(\dfrac{1}{x^2-3x+3}+\dfrac{2}{x^2-3x+4}=\dfrac{6}{x^2-3x+5}\)
4/ \(\dfrac{6}{\left(x+1\right)\left(x+2\right)}+\dfrac{8}{\left(x-1\right)\left(x+4\right)}=1\)
5/ \(4\left(x^3+\dfrac{1}{x^3}\right)=13\left(x+\dfrac{1}{x}\right)\)
6/ \(\dfrac{4x}{4x^2-8x+7}+\dfrac{3x}{4x^2-10x+7}=1\)
7/ \(\dfrac{x^2-3x+5}{x^2-4x+5}-\dfrac{x^2-5x+5}{x^2-6x+5}=-\dfrac{1}{4}\)
8/ \(x.\dfrac{8-x}{x-1}\left(x-\dfrac{8-x}{x-1}\right)=15\)
1.Giải các phương trình sau:
A. 1+14/(x-4)^2=-9/x-4
B.1+8x/1+2x-2x/2x-1+12x^2-9/1-4x^2=0
C.1/2x-6-3x-5/x^2-4x+3=1/2
a.4 / x+1 = 3 /x-2
b.x+2 / 2x-4 - 4x / x^2-4=0
c. 1 / x-3 -5/x = 3x+7 / x(x-3)