a, đk : x khác -1 ; x khác 2
\(\Rightarrow4x-8=3x+3\Leftrightarrow x=11\left(tm\right)\)
b, đk : x khác 2 ; -2
\(\Rightarrow\left(x+2\right)^2-8x=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\left(ktm\right)\)
-> vậy pt vô nghiệm
c, đk : x khác 3 ; 0
\(\Rightarrow x-5\left(x-3\right)=3x+7\Leftrightarrow-4x+15=3x+7\Leftrightarrow-7x=-8\Leftrightarrow x=\dfrac{8}{7}\left(tm\right)\)
a)Với \(x\ne-1;x\ne2\)
\(\dfrac{4}{x+1}=\dfrac{3}{x-2}\)
<=>4(x-2)=3(x+1)
<=>4x-8=3x+3
<=>x=11(TM)
b)Với\(x\ne\pm2\)
\(\dfrac{x+2}{2x-4}-\dfrac{4x}{x^2-4}=0\)
<=>\(\dfrac{x+2}{2\left(x-2\right)}-\dfrac{4x}{\left(x+2\right)\left(x-2\right)}=0\)
<=>\(\dfrac{\left(x+2\right)^2-8x}{2\left(x+2\right)\left(x-2\right)}=0\)
<=>\(x^2+4x+4-8x=0\left(Vĩx\ne\pm2\right)\)
<=>\(x^2-4x+4=0\)
<=>\(\left(x-2\right)^2=0\)
<=>x-2=0
<=>x=2(Không thỏa mãn)
c)Với \(x\ne3,x\ne0\)
\(\dfrac{1}{x-3}-\dfrac{5}{x}=\dfrac{3x+7}{x\left(x-3\right)}\)
<=>\(\dfrac{x-5\left(x-3\right)}{x\left(x-3\right)}=\dfrac{3x+7}{x\left(x-3\right)}\)
<=>x-5x+15=3x+7(Vì \(x\ne0,x\ne3\))
<=>7x=8
<=>x=\(\dfrac{8}{7}\left(TM\right)\)