⇔x2-2x+1+2x2+4x-2x-4=0
⇔3x2-3=0
⇔3(x2-1)=0
⇔x2-1=0
⇔x2=1
⇔x=1
Vậy S={1}
\(\left(x-1\right)^2+2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2=0\\ \Leftrightarrow\left(x-1+x+2\right)^2=0\\ \Leftrightarrow\left(2x+1\right)^2=0\\ \Leftrightarrow2x+1=0\\ \Leftrightarrow x=\dfrac{-1}{2}\)
Vậy \(x=\dfrac{-1}{2}\) là nghiệm của pt.
(x-1)2 +2(x-1)(x+2) + (x+2)2=0
<=> (2x+1)2=0
<=> 2x+1=0
<=> 2x= -1
<=> \(x=-\dfrac{1}{2}\)
Vậy .....
(x-1)2 +2(x-1)(x+2) + (x+2)2= 0
\(< =>\left[\left(x-1\right)^2+2\left(x-1\right)\left(x+2\right)\right]+\left(x+2\right)^2=0\)
\(< =>\left[x-1\left(x-1+2\left(x+2\right)\right)\right]+\left(x+2\right)^2=0\)
\(< =>\left[x-1\left(x-1+2x+4\right)\right]+\left(x+2\right)^2=0\)
\(< =>\left(x-1\right)\left(3x+3\right)+\left(x+2\right)^2=0\)
\(< =>3x^2-3x+3x-3+x^2+4x+4=0\)
\(< =>4x^2+4x+1=0\)
\(< =>\left(2x+1\right)^2=0\)
\(=>2x+1=0\)
\(< =>2x=-1\)
\(< =>x=-\dfrac{1}{2}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{1}{2}\right\}\)
(x-1)²+2(x-1)(x+2)+(x+2)²=0
⇔(x-1+x+2)²=0
⇔(2x+1)²=0
⇔x=-1/2
S={-1/2}
Ta có: \(\left(x-1\right)^2+2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x-1+x+2\right)^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2=0\)
\(\Leftrightarrow2x+1=0\)
\(\Leftrightarrow2x=-1\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)Vậy: \(S=\left\{-\dfrac{1}{2}\right\}\)